我今天在TensorFlow上做了一些研究,把下面的代码拼凑在一起。基本上,我正在尝试从Spyder运行TensorFlow (而不是从Anaconda的cmd行)。我认为这是可能的,对吧。所以,我运行了下面的代码(选择所有代码并点击Spyder键),它在F9中运行良好,但当我试图在TensorBoard中查看一些/任何结果时,我看到了以下内容。

# my code ...
import pandas as pd
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
# %matplotlib inline
import seaborn as sns
sns.set(style="darkgrid")
from tensorboard import program
tb = program.TensorBoard()
tb.configure(argv=[None, '--logdir', 'C:/Users/ryans/']) # path to my default Spyder CLI
url = tb.launch()
# Classification with TensorFlow 2.0
cols = ['price', 'maint', 'doors', 'persons', 'lug_capacity', 'safety','output']
cars = pd.read_csv(r'C:/path_here/car_evaluation.csv', names=cols, header=None)
cars.head()
plot_size = plt.rcParams["figure.figsize"]
plot_size [0] = 8
plot_size [1] = 6
plt.rcParams["figure.figsize"] = plot_size
cars.output.value_counts().plot(kind='pie', autopct='%0.05f%%', colors=['lightblue', 'lightgreen', 'orange', 'pink'], explode=(0.05, 0.05, 0.05,0.05))
price = pd.get_dummies(cars.price, prefix='price')
maint = pd.get_dummies(cars.maint, prefix='maint')
doors = pd.get_dummies(cars.doors, prefix='doors')
persons = pd.get_dummies(cars.persons, prefix='persons')
lug_capacity = pd.get_dummies(cars.lug_capacity, prefix='lug_capacity')
safety = pd.get_dummies(cars.safety, prefix='safety')
labels = pd.get_dummies(cars.output, prefix='condition')
X = pd.concat([price, maint, doors, persons, lug_capacity, safety] , axis=1)
labels.head()
y = labels.values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42)
#Model Training
from tensorflow.keras.layers import Input, Dense, Activation,Dropout
from tensorflow.keras.models import Model
input_layer = Input(shape=(X.shape[1],))
dense_layer_1 = Dense(15, activation='relu')(input_layer)
dense_layer_2 = Dense(10, activation='relu')(dense_layer_1)
output = Dense(y.shape[1], activation='softmax')(dense_layer_2)
model = Model(inputs=input_layer, outputs=output)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
print(model.summary())
history = model.fit(X_train, y_train, batch_size=8, epochs=50, verbose=1, validation_split=0.2)
score = model.evaluate(X_test, y_test, verbose=1)
print("Test Score:", score[0])
print("Test Accuracy:", score[1])
# path to dataset
# https://www.kaggle.com/elikplim/car-evaluation-data-set
# finally...not sure if I should be using TensorFlow or TensorFlow2.0
# maybe it doesn't matter...发布于 2020-04-02 13:21:47
您需要按如下方式运行TensorBoard回调:
tensorboard_cb = tf.keras.callbacks.TensorBoard(
os.path.join(args.job_dir, 'keras_tensorboard'),
histogram_freq=1)
keras_model.fit(
...
callbacks=[tensorboard_cb])
export_path = os.path.join('/tmp/', 'keras_export')
tf.keras.models.save_model(keras_model, export_path)完整的here示例
确保您首先通过CLI运行以确认您在TB中看到了某些内容,然后执行您正在执行的相同步骤:
tensorboard --logdir='/tmp/keras_export'https://stackoverflow.com/questions/60981589
复制相似问题