我正在尝试生成和再生随机法线的向量。
我想通过生成大小为100x3的随机法线矩阵和平均值为0和sd 1的随机法线来实现以下目标:
seed1 = '123'
seed2 = 'asd'
randMatrixrows = 100
randMatrixcols = 3
mu = 0
sd = 1
normRand1 = rekina_normRandomGenerator( seed1, randMatrixrows, randMatrixcols, mu, sd ) #normRand1 is of size 100x3
normRand2 = rekina_normRandomGenerator( seed2, randMatrixrows, randMatrixcols, mu, sd )
normRand3 = rekina_normRandomGenerator( seed1, randMatrixrows, randMatrixcols, mu, sd )
normRand4 = rekina_normRandomGenerator( seed2, randMatrixrows, randMatrixcols, mu, sd )
err1 = normRand1 - normRand3
err2 = normRand2 - normRand4err1和err2的每个元素应该是0。
我也尝试过阅读,但是作为Python新手,我对这个实现完全失去了兴趣。我希望有一个简单的实现来演示如何使用CBRNG。
发布于 2016-04-19 09:01:09
您最初认为必须使用reikna.cbrng.CBRNG的假设是正确的。它似乎提供了大量基于反式RNG的伪随机源和分布,这可能会让人感到困惑。它还提供了创建具有给定分布的随机数生成器的快捷键。
from reikna.core import Type
from reikna.cbrng import CBRNG
from reikna.cluda import any_api
import numpy as np
# Get any supported API for this system, or an exception    
_api = any_api()
# The global CLUDA Thread, wrapping context, shared by all
# reikna_norm_rng's
_thr = _api.Thread.create()
def reikna_norm_rng(seed, rows, cols, mean, std,
                    dtype=np.float32,
                    generators_dim=1):
    """
    A do-all generator function for creating a new Computation
    returning a stream of pseudorandom number arrays.
    """
    # The Type of the output array
    randoms_arr = Type(dtype, (rows, cols))
    # Shortcut for creating a Sampler for normally distributed
    # random numbers
    rng = CBRNG.normal_bm(randoms_arr=randoms_arr,
                          generators_dim=generators_dim,
                          sampler_kwds=dict(mean=mean, std=std),
                          # Reikna expects a positive integer. This is a 
                          # quick and *dirty* solution.
                          seed=abs(hash(seed)))
    compiled_comp = rng.compile(_thr)
    # RNG "state"
    counters = _thr.to_device(rng.create_counters())
    # Output array
    randoms = _thr.empty_like(compiled_comp.parameter.randoms)
    while True:
        compiled_comp(counters, randoms)
        yield randoms.get()若要在行动中看到它,请添加:
if __name__ == '__main__':
    seed1 = '123'
    seed2 = 'asd'
    rows, cols = 100, 3
    mu, sd = 0, 1
    # This will create a new RNG, take 1 result and throw the RNG away
    r1 = next(reikna_norm_rng(seed1, rows, cols, mu, sd))
    r2 = next(reikna_norm_rng(seed2, rows, cols, mu, sd))
    r3 = next(reikna_norm_rng(seed1, rows, cols, mu, sd))
    r4 = next(reikna_norm_rng(seed2, rows, cols, mu, sd))
    err1 = r1 - r3
    err2 = r2 - r4
    print("all(err1 == 0):", np.all(err1 == 0))
    print("all(err2 == 0):", np.all(err2 == 0))我还想确保用这两种不同的种子生成的随机画没有相关性。
这取决于执行的质量。以下是2组种子和1组数字的绘制方法:
rng1 = reikna_norm_rng(0, 100, 10000, 0, 1)
rng2 = reikna_norm_rng(1, 100, 10000, 0, 1)
A = next(rng1)
B = next(rng2)
A_r = A.ravel()
B_r = B.ravel()
for i in range(0, A_r.size, 1000):
    plot(A_r[i:i+1000], B_r[i:i+1000], 'b.')

免责声明
这是我第一次和雷克纳一起跑。上面的代码可能不会像筛子一样及时释放资源和/或泄漏。它使用的是全局Thread,在更大的应用程序中这可能不是您想要的。
PS
np.random.seed(seed)
np.random.normal(0, 1, (100, 3))还生成形状为(100,3)的正态分布随机数数组,尽管它不使用GPU。
https://stackoverflow.com/questions/36536062
复制相似问题