我使用管道模块在火花放电中实现DecisionTreeClassifier,因为我有几个特性工程步骤要在我的数据集上执行。代码类似于星火文档中的示例:
from pyspark import SparkContext, SQLContext
from pyspark.ml import Pipeline
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.ml.feature import StringIndexer, VectorIndexer
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
# Load the data stored in LIBSVM format as a DataFrame.
data = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
# Index labels, adding metadata to the label column.
# Fit on whole dataset to include all labels in index.
labelIndexer = StringIndexer(inputCol="label", outputCol="indexedLabel").fit(data)
# Automatically identify categorical features, and index them.
# We specify maxCategories so features with > 4 distinct values are treated as continuous.
featureIndexer =\
VectorIndexer(inputCol="features", outputCol="indexedFeatures", maxCategories=4).fit(data)
# Split the data into training and test sets (30% held out for testing)
(trainingData, testData) = data.randomSplit([0.7, 0.3])
# Train a DecisionTree model.
dt = DecisionTreeClassifier(labelCol="indexedLabel", featuresCol="indexedFeatures")
# Chain indexers and tree in a Pipeline
pipeline = Pipeline(stages=[labelIndexer, featureIndexer, dt])
# Train model. This also runs the indexers.
model = pipeline.fit(trainingData)
# Make predictions.
predictions = model.transform(testData)
# Select example rows to display.
predictions.select("prediction", "indexedLabel", "features").show(5)
# Select (prediction, true label) and compute test error
evaluator = MulticlassClassificationEvaluator(
labelCol="indexedLabel", predictionCol="prediction", metricName="precision")
accuracy = evaluator.evaluate(predictions)
print("Test Error = %g " % (1.0 - accuracy))
treeModel = model.stages[2]
# summary only
print(treeModel)问题是如何对此进行模型解释?管道模型对象没有与DecisionTree.trainClassifier类中的方法类似的方法DecisionTree.trainClassifier,而且我不能在管道中使用DecisionTree.trainClassifier,因为training ()将训练数据作为参数。
而管道在测试数据的fit()方法和transform()中接受训练数据作为参数
是否有一种方法可以使用管道而仍然执行模型解释&查找属性重要性?
发布于 2016-07-08 05:22:15
是的,我几乎在所有的模型解释中都使用了下面的方法。下面的行使用代码摘录中的命名约定。
dtm = model.stages[-1] # you estimator is the last stage in the pipeline
# hence the DecisionTreeClassifierModel will be the last transformer in the PipelineModel object
dtm.explainParams()现在您可以访问DecisionTreeClassifierModel的所有方法。所有可用的方法和属性都可以找到这里。在您的示例中没有测试代码。
https://stackoverflow.com/questions/37021964
复制相似问题