首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >NumPy IFFT在OaA卷积算法中引入黑条

NumPy IFFT在OaA卷积算法中引入黑条
EN

Stack Overflow用户
提问于 2016-06-12 05:59:05
回答 1查看 283关注 0票数 3

我很难诊断和修正这个错误。我正在尝试编写OaA算法,描述了在本文中

代码语言:javascript
运行
复制
#!/usr/bin/env python
# -*- coding: utf-8 -*-

""" Quick implementation of several convolution algorithms to compare times 
"""

import numpy as np
import _kernel
from tqdm import trange, tqdm
from PIL import Image
from scipy.misc import imsave
from time import time, sleep


class convolve(object):
    """ contains methods to convolve two images """
    def __init__(self, image_array, kernel, back_same_size=True):
        self.array = image_array
        self.kernel = kernel

        # Store these values as they will be accessed a _lot_
        self.__rangeX_ = self.array.shape[0]
        self.__rangeY_ = self.array.shape[1]
        self.__rangeKX_ = self.kernel.shape[0]
        self.__rangeKY_ = self.kernel.shape[1]

        # Ensure the kernel is suitable to convolve the image
        if (self.__rangeKX_ >= self.__rangeX_ or \
            self.__rangeKY_ >= self.__rangeY_):
            raise ValueError('Must submit suitably-sized arrays')

        if (back_same_size):
            # pad array for convolution
            self.__offsetX_ = self.__rangeKX_ // 2
            self.__offsetY_ = self.__rangeKY_ // 2
         
            self.array = np.lib.pad(self.array,      \
                [(self.__offsetY_, self.__offsetY_), \
                 (self.__offsetX_, self.__offsetX_)],\
                 mode='constant', constant_values=0)

            # Update these
            self.__rangeX_ = self.array.shape[0]
            self.__rangeY_ = self.array.shape[1]
        else:
            self.__offsetX_ = 0
            self.__offsetY_ = 0

        # to be returned instead of the originals
        self.__arr_ = np.zeros([self.__rangeX_, self.__rangeY_])\

    def spaceConv(self):
        """ normal convolution, O(N^2*n^2). This is usually too slow """

        # this is the O(N^2) part of this algorithm
        for i in trange(self.__rangeX_):
            for j in xrange(self.__rangeY_):
                # Now the O(n^2) portion
                total = 0.0
                for k in xrange(self.__rangeKX_):
                    for t in xrange(self.__rangeKY_):
                        total += \
                  self.kernel[k][t] * self.array[i+k][j+t]

                # Update entry in self.__arr_, which is to be returned
                # http://stackoverflow.com/a/38320467/3928184
                self.__arr_[i][j] = total

        return self.__arr_[self.__offsetX_\
                           :self.__rangeX_ - self.__offsetX_,\
                           self.__offsetY_\
                           :self.__rangeY_ - self.__offsetY_]

    def spaceConvDot(self):
        """ Exactly the same as the former method """

        def dot(ind, jnd):
            """ perform a simple 'dot product' between the 2 
            dimensional image subsets. """
            total = 0.0

            # This is the O(n^2) part of the algorithm
            for k in xrange(self.__rangeKX_):
                for t in xrange(self.__rangeKY_):
                    total += \
              self.kernel[k][t] * self.array[k + ind, t + jnd]
            return total
     
        # this is the O(N^2) part of the algorithm
        for i in trange(self.__rangeX_):
            for j in xrange(self.__rangeY_):
                self.__arr_[i][j] = dot(i, j)
     
        return self.__arr_[self.__offsetX_\
                           :self.__rangeX_ - self.__offsetX_,\
                           self.__offsetY_\
                           :self.__rangeY_ - self.__offsetY_]

    def OAconv(self):
        """ faster convolution algorithm, O(N^2*log(n)). """
        from numpy.fft import fft2 as FFT, ifft2 as iFFT

        # solve for the total padding along each axis
        diffX = (self.__rangeKX_ - self.__rangeX_ +  \
                 self.__rangeKX_ * (self.__rangeX_ //\
                 self.__rangeKX_)) % self.__rangeKX_
        
        diffY = (self.__rangeKY_ - self.__rangeY_ +  \
                 self.__rangeKY_ * (self.__rangeY_ //\
                 self.__rangeKY_)) % self.__rangeKY_

        # padding on each side, i.e. left, right, top and bottom; 
        # centered as well as possible
        right = diffX // 2
        left = diffX - right
        bottom = diffY // 2
        top = diffY - bottom

        # pad the array
        self.array = np.lib.pad(self.array,                 \
                            ((left, right), (top, bottom)), \
                           mode='constant', constant_values=0)

        divX = self.array.shape[0] / float(self.__rangeKX_)
        divY = self.array.shape[1] / float(self.__rangeKY_)

        # Let's just make sure...
        if not (divX % 1.0 == 0.0 or divY % 1.0 == 0.0):
            raise ValueError('Image not partitionable (?)')
        else:
            divX = int(divX)
            divY = int(divY)

        # a list of tuples to partition the array by
        subsets = [(i*self.__rangeKX_, (i + 1)*self.__rangeKX_,\
                    j*self.__rangeKY_, (j + 1)*self.__rangeKY_)\
                        for i in xrange(divX)                  \
                        for j in xrange(divY)]

        # padding for individual blocks in the subsets list
        padX = self.__rangeKX_ // 2
        padY = self.__rangeKY_ // 2

        self.__arr_ = np.lib.pad(self.__arr_,              \
                            ((left + padX, right + padX),  \
                             (top + padY, bottom + padY)), \
                           mode='constant', constant_values=0)

        kernel = np.pad(self.kernel,                  \
                        [(padY, padY), (padX, padX)], \
                      mode='constant', constant_values=0)

        # We only need to do this once
        trans_kernel = FFT(kernel)

        # transform each partition and OA on conv_image
        for tup in tqdm(subsets):
            # slice and pad the array subset
            subset = self.array[tup[0]:tup[1], tup[2]:tup[3]]

            subset = np.lib.pad(subset,      \
                [(padY, padY), (padX, padX)],\
                mode='constant', constant_values=0)

            trans_subset = FFT(subset)

            # multiply the two arrays entrywise
            subset = trans_kernel * trans_subset
            space = iFFT(subset).real

            # overlap with indices and add them together
            self.__arr_[tup[0]:tup[1] + 2 * padX, \
                        tup[2]:tup[3] + 2 * padY] += space

        # crop image and get it back, convolved
        return self.__arr_[self.__offsetX_ + padX + left   \
                           :padX + left + self.__rangeX_   \
                              - self.__offsetX_,           \
                           self.__offsetY_ + padY + bottom \
                           :padY + bottom + self.__rangeY_ \
                              - self.__offsetY_]

    def OSconv(self):
        """ Convolve an image using OS """
        from numpy.fft import fft2 as FFT, ifft2 as iFFT
        pass

    def builtin(self):
        """ Convolves using SciPy's convolution function - extremely
        fast """
        from scipy.ndimage.filters import convolve
        return convolve(self.array, self.kernel)


if __name__ == '__main__':
    try:
        import pyplot as plt
    except ImportError:
        import matplotlib.pyplot as plt

    image = np.array(Image.open('spider.jpg'))

    image = np.rot90(np.rot90(np.rot90(image.T[0])))

    times = []

    #for i in range(3, 21, 2):
    kern = _kernel.Kernel()
    kern = kern.Kg2(11, 11, sigma=2.5, muX=0.0, muY=0.0)
    kern /= np.sum(kern)        # normalize volume

    conv = convolve(image, kern)
    #
    #    # Time the result of increasing kernel size
    #    _start = time()
    convolved = conv.OAconv()
    #convolved = conv.builtin()
    #    _end = time()
    #    times.append(_end - _start)

    #x = np.array(range(3, 21, 2))
    #plt.plot(range(3, 21, 2), times)
    #plt.title('Kernel Size vs. spaceConv time', fontsize=12)
    #plt.xlabel('Kernel Size (px)', fontsize=12)
    #plt.ylabel('Time (s)', fontsize=12)
    #plt.xticks(x, x)
    #plt.show()

    #conv = convolve(image[:2*kern.shape[0],:5*kern.shape[1]], kern)

    plt.imshow(convolved, interpolation='none', cmap='gray')
    plt.show()
    #imsave('spider2', convolved, format='png')

但是现在,当我调用它时,我得到了一个测试图像中的黑条,如下所示:

下面是我使用的高斯核的一个例子。

代码语言:javascript
运行
复制
[[ 0.          0.02390753  0.03476507  0.02390753  0.        ]
 [ 0.02390753  0.06241541  0.07990366  0.06241541  0.02390753]
 [ 0.03476507  0.07990366  0.10040324  0.07990366  0.03476507]
 [ 0.02390753  0.06241541  0.07990366  0.06241541  0.02390753]
 [ 0.          0.02390753  0.03476507  0.02390753  0.        ]]

我想我已经把问题缩小到乘法和IFFT了

代码语言:javascript
运行
复制
space = np.real(IFFT(transformed_kernel*transformed_subset))

我认为这与离散高斯核的IFFT有关(出于某种原因)。这很奇怪因为如果我只是在策划

代码语言:javascript
运行
复制
space = np.real(IFFT(transformed_subset))

我得到了以下内容(没有黑条,它将其分解回精细的):

如果我画的是相反的,

代码语言:javascript
运行
复制
space = np.real(IFFT(transformed_kernel))

再次得到没有黑条,它似乎把他们放在正确的地方。

我遗漏了什么?我已经盯着这个看了好几天了,编辑索引什么的,但是我无法摆脱这个标签:

EN

回答 1

Stack Overflow用户

回答已采纳

发布于 2016-07-14 21:28:01

您的问题是,内核似乎处于中间:

但事实并非如此--还有一个变化(11,11),当你看卷积的结果时,这一点就变得很明显了。内核的中心应该在(0,0)中,并且(由于模块化)内核应该如下所示:

因此,我稍微修改了您的代码(对不起,我从来没有这么多地使用过np,但我希望您能得到要点):

代码语言:javascript
运行
复制
 ... your code ...
 kernel = np.pad(self.kernel,                  \
                        [(padY, padY), (padX, padX)], \
                      mode='constant', constant_values=0)
 #Move the kernel center to the origin:                   
 new_kernel=np.full_like(kernel, 0)
 X,Y=kernel.shape
 X_2=X//2
 Y_2=Y//2
 for x in xrange(X):
     for y in xrange(Y):
          n_x=(x+X_2)%X
          n_y=(y+Y_2)%Y        
          new_kernel[n_x,n_y]=kernel[x,y]


  # We only need to do this once          
  trans_kernel = FFT(new_kernel)# take the transform of the shifted kernel
  .... your code ......

以及:

没有黑色网格!

票数 3
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/37771182

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档