我可以用Kivy和Matplotlib很好地生成一个二维曲面图。我正在尝试更新Z值的按钮点击。如何才能做到这一点?
我注意到我可以发出一个plt.clf(),它将清除绘图,但是执行plt.gcf()来显示当前的绘图不起作用。
如有任何建议,我们将不胜感激。
import matplotlib
matplotlib.use('module://kivy.garden.matplotlib.backend_kivy')
from matplotlib.figure import Figure
from numpy import arange, sin, pi
from kivy.app import App
import numpy as np
from matplotlib.mlab import griddata
from kivy.garden.matplotlib.backend_kivy import FigureCanvas,\
NavigationToolbar2Kivy
# from backend_kivy import FigureCanvasKivy as FigureCanvas
from kivy.uix.floatlayout import FloatLayout
from kivy.uix.boxlayout import BoxLayout
from matplotlib.transforms import Bbox
from kivy.uix.button import Button
from kivy.graphics import Color, Line, Rectangle
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
fig, ax = plt.subplots()
X = np.arange(-508, 510, 203.2)
Y = np.arange(-508, 510, 203.2)
X, Y = np.meshgrid(X, Y)
Z = np.random.rand(6, 6)
plt.contourf(X, Y, Z, 100, zdir='z', offset=1.0, cmap=cm.hot)
plt.colorbar()
ax.set_ylabel('Y [mm]')
ax.set_title('NAILS surface')
ax.set_xlabel('X [mm]')
canvas = fig.canvas
def callback(instance):
fig, ax = plt.subplots()
X = np.arange(-508, 510, 203.2)
Y = np.arange(-508, 510, 203.2)
X, Y = np.meshgrid(X, Y)
Z = np.random.rand(6, 6)
plt.contourf(X, Y, Z, 100, zdir='z', offset=1.0, cmap=cm.hot)
plt.colorbar()
ax.set_ylabel('Y [mm]')
ax.set_title('NAILS surface')
ax.set_xlabel('X [mm]')
canvas = fig.canvas
canvas.draw()
class MatplotlibTest(App):
title = 'Matplotlib Test'
def build(self):
fl = BoxLayout(orientation="vertical")
a = Button(text="press me", height=40, size_hint_y=None)
a.bind(on_press=callback)
fl.add_widget(canvas)
fl.add_widget(a)
return fl
if __name__ == '__main__':
MatplotlibTest().run()
发布于 2016-07-28 07:45:08
代码的第45行:
fig, ax = plt.subplots()
创建一个新的图形,从而创建一个新的画布。此画布从未添加到BoxLayout
中,因此从未显示。重新使用旧画布可能是个更好的主意。将回调函数更改为:
def callback(instance):
# Clear the existing figure and re-use it
plt.clf()
X = np.arange(-508, 510, 203.2)
Y = np.arange(-508, 510, 203.2)
X, Y = np.meshgrid(X, Y)
Z = np.random.rand(6, 6)
plt.contourf(X, Y, Z, 100, zdir='z', offset=1.0, cmap=cm.hot)
plt.colorbar()
ax.set_ylabel('Y [mm]')
ax.set_title('NAILS surface')
ax.set_xlabel('X [mm]')
canvas.draw_idle()
发布于 2016-07-28 17:22:11
需要使无花果和ax变量成为全局变量。调用plt.clf()以清除当前图形,并使用适当的颜色条重新绘制。
import matplotlib
matplotlib.use('module://kivy.garden.matplotlib.backend_kivy')
from matplotlib.figure import Figure
from numpy import arange, sin, pi
from kivy.app import App
import numpy as np
from matplotlib.mlab import griddata
from kivy.garden.matplotlib.backend_kivy import FigureCanvas,\
NavigationToolbar2Kivy
# from backend_kivy import FigureCanvasKivy as FigureCanvas
from kivy.uix.floatlayout import FloatLayout
from kivy.uix.boxlayout import BoxLayout
from matplotlib.transforms import Bbox
from kivy.uix.button import Button
from kivy.graphics import Color, Line, Rectangle
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
# fig, ax = plt.subplots()
fig, ax = plt.subplots()
X = np.arange(-508, 510, 203.2)
Y = np.arange(-508, 510, 203.2)
X, Y = np.meshgrid(X, Y)
Z = np.random.rand(6, 6)
plt.contourf(X, Y, Z, 100, zdir='z', offset=1.0, cmap=cm.hot)
plt.colorbar()
ax.set_ylabel('Y [mm]')
ax.set_title('NAILS surface')
ax.set_xlabel('X [mm]')
canvas = fig.canvas
def callback(instance):
global fig, ax
# fig, ax = plt.subplots()
X = np.arange(-508, 510, 203.2)
Y = np.arange(-508, 510, 203.2)
X, Y = np.meshgrid(X, Y)
Z = 1000*np.random.rand(6, 6)
plt.clf()
plt.contourf(X, Y, Z, 100, zdir='z', offset=1.0, cmap=cm.hot)
plt.colorbar()
# ax.set_ylabel('Y [mm]')
# ax.set_title('NAILS surface')
# ax.set_xlabel('X [mm]')
# canvas = fig.canvas
canvas.draw()
class MatplotlibTest(App):
title = 'Matplotlib Test'
def build(self):
fl = BoxLayout(orientation="vertical")
a = Button(text="press me", height=40, size_hint_y=None)
a.bind(on_press=callback)
fl.add_widget(canvas)
fl.add_widget(a)
return fl
if __name__ == '__main__':
MatplotlibTest().run()
https://stackoverflow.com/questions/38624168
复制相似问题