我们正在处理一个回归模型,其中包含两个分类变量-年龄组和性别。
我们希望在这两个范畴变量之间包含一个相互作用项,但结果模型只显示了女性与所有年龄组之间相互作用的效果。
我们如何调整代码,使其将“男性”年龄保持在“26-30岁”作为参考水平,并在其输出中显示所有其他群体的影响?
调整码
count_med_op3 <- glm(Count_OP ~ Gender * age_group + otherfactors,
data = med, family = 'poisson')想要的结果:
GenderMale:age_group"0-1"
GenderMale:age_group"2-6"
GenderMale:age_group"7-18"
GenderMale:age_group"19-25"
GenderMale:age_group"31-36"
Genderfemale:age_group"0-1"
Genderfemale:age_group"2-6"
Genderfemale:age_group"7-18"
Genderfemale:age_group"19-25"
Genderfemale:age_group"26-30"
other factors发布于 2016-08-17 10:42:01
使用relevel:
# simulate some data
df_foo = data_frame(
age = as.factor(sample(seq(10, 90, 10), 100, replace = TRUE)),
y = rnorm(100),
gender = as.factor(sample(c("Male", "Female"), 100, replace = TRUE))
)
# female as omitted level
df_foo %>%
lm(y ~ age*gender, data = .) %>%
summary()
# male as omitted level
df_foo %>%
lm(y ~ age*relevel(gender, ref = "Male"), data = .) %>%
summary()https://stackoverflow.com/questions/38994034
复制相似问题