首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >AWS中缺少hive_staging文件的原因

AWS中缺少hive_staging文件的原因
EN

Stack Overflow用户
提问于 2016-09-17 12:47:59
回答 2查看 6.3K关注 0票数 9

问题-

我正在运行AWS EMR中的一个查询。它失败了,抛出了异常-

代码语言:javascript
运行
复制
java.io.FileNotFoundException: File s3://xxx/yyy/internal_test_automation/2016/09/17/17156/data/feed/commerce_feed_redshift_dedup/.hive-staging_hive_2016-09-17_10-24-20_998_2833938482542362802-639 does not exist.

我在下面提到了这个问题的所有相关信息。请查收。

查询-

代码语言:javascript
运行
复制
INSERT OVERWRITE TABLE base_performance_order_dedup_20160917
SELECT 
*
 FROM 
(
select
commerce_feed_redshift_dedup.sku AS sku,
commerce_feed_redshift_dedup.revenue AS revenue,
commerce_feed_redshift_dedup.orders AS orders,
commerce_feed_redshift_dedup.units AS units,
commerce_feed_redshift_dedup.feed_date AS feed_date
from commerce_feed_redshift_dedup
) tb

异常-

代码语言:javascript
运行
复制
ERROR Error while executing queries
java.sql.SQLException: Error while processing statement: FAILED: Execution Error, return code 2 from org.apache.hadoop.hive.ql.exec.tez.TezTask. Vertex failed, vertexName=Map 1, vertexId=vertex_1474097800415_0311_2_00, diagnostics=[Vertex vertex_1474097800415_0311_2_00 [Map 1] killed/failed due to:ROOT_INPUT_INIT_FAILURE, Vertex Input: commerce_feed_redshift_dedup initializer failed, vertex=vertex_1474097800415_0311_2_00 [Map 1], java.io.FileNotFoundException: File s3://xxx/yyy/internal_test_automation/2016/09/17/17156/data/feed/commerce_feed_redshift_dedup/.hive-staging_hive_2016-09-17_10-24-20_998_2833938482542362802-639 does not exist.
    at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.listStatus(S3NativeFileSystem.java:987)
    at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.listStatus(S3NativeFileSystem.java:929)
    at com.amazon.ws.emr.hadoop.fs.EmrFileSystem.listStatus(EmrFileSystem.java:339)
    at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1530)
    at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1537)
    at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1556)
    at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1601)
    at org.apache.hadoop.fs.FileSystem$4.(FileSystem.java:1778)
    at org.apache.hadoop.fs.FileSystem.listLocatedStatus(FileSystem.java:1777)
    at org.apache.hadoop.fs.FileSystem.listLocatedStatus(FileSystem.java:1755)
    at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:239)
    at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:201)
    at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:281)
    at org.apache.hadoop.hive.ql.io.HiveInputFormat.addSplitsForGroup(HiveInputFormat.java:363)
    at org.apache.hadoop.hive.ql.io.HiveInputFormat.getSplits(HiveInputFormat.java:486)
    at org.apache.hadoop.hive.ql.exec.tez.HiveSplitGenerator.initialize(HiveSplitGenerator.java:200)
    at org.apache.tez.dag.app.dag.RootInputInitializerManager$InputInitializerCallable$1.run(RootInputInitializerManager.java:278)
    at org.apache.tez.dag.app.dag.RootInputInitializerManager$InputInitializerCallable$1.run(RootInputInitializerManager.java:269)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:422)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657)
    at org.apache.tez.dag.app.dag.RootInputInitializerManager$InputInitializerCallable.call(RootInputInitializerManager.java:269)
    at org.apache.tez.dag.app.dag.RootInputInitializerManager$InputInitializerCallable.call(RootInputInitializerManager.java:253)
    at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
]Vertex killed, vertexName=Reducer 2, vertexId=vertex_1474097800415_0311_2_01, diagnostics=[Vertex received Kill in INITED state., Vertex vertex_1474097800415_0311_2_01 [Reducer 2] killed/failed due to:OTHER_VERTEX_FAILURE]DAG did not succeed due to VERTEX_FAILURE. failedVertices:1 killedVertices:1
    at org.apache.hive.jdbc.HiveStatement.waitForOperationToComplete(HiveStatement.java:348)
    at org.apache.hive.jdbc.HiveStatement.execute(HiveStatement.java:251)
    at com.XXX.YYY.executors.HiveQueryExecutor.executeQueriesInternal(HiveQueryExecutor.java:234)
    at com.XXX.YYY.executors.HiveQueryExecutor.executeQueriesMetricsEnabled(HiveQueryExecutor.java:184)
    at com.XXX.YYY.azkaban.jobexecutors.impl.AzkabanHiveQueryExecutor.run(AzkabanHiveQueryExecutor.java:68)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:606)
    at azkaban.jobtype.JavaJobRunnerMain.runMethod(JavaJobRunnerMain.java:192)
    at azkaban.jobtype.JavaJobRunnerMain.(JavaJobRunnerMain.java:132)
    at azkaban.jobtype.JavaJobRunnerMain.main(JavaJobRunnerMain.java:76)

蜂巢配置属性,在执行上述查询之前设置。-

代码语言:javascript
运行
复制
set hivevar:hive.mapjoin.smalltable.filesize=2000000000
set hivevar:mapreduce.map.speculative=false
set hivevar:mapreduce.output.fileoutputformat.compress=true
set hivevar:hive.exec.compress.output=true
set hivevar:mapreduce.task.timeout=6000000
set hivevar:hive.optimize.bucketmapjoin.sortedmerge=true
set hivevar:io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec
set hivevar:hive.input.format=org.apache.hadoop.hive.ql.io.BucketizedHiveInputFormat
set hivevar:hive.auto.convert.sortmerge.join.noconditionaltask=false
set hivevar:FEED_DATE=20160917
set hivevar:hive.optimize.bucketmapjoin=true
set hivevar:hive.exec.compress.intermediate=true
set hivevar:hive.enforce.bucketmapjoin=true
set hivevar:mapred.output.compress=true
set hivevar:mapreduce.map.output.compress=true
set hivevar:hive.auto.convert.sortmerge.join=false
set hivevar:hive.auto.convert.join=false
set hivevar:mapreduce.reduce.speculative=false
set hivevar:PD_KEY=vijay-test-mail@XXX.pagerduty.com
set hivevar:mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec
set hive.mapjoin.smalltable.filesize=2000000000
set mapreduce.map.speculative=false
set mapreduce.output.fileoutputformat.compress=true
set hive.exec.compress.output=true
set mapreduce.task.timeout=6000000
set hive.optimize.bucketmapjoin.sortedmerge=true
set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec
set hive.input.format=org.apache.hadoop.hive.ql.io.BucketizedHiveInputFormat
set hive.auto.convert.sortmerge.join.noconditionaltask=false
set FEED_DATE=20160917
set hive.optimize.bucketmapjoin=true
set hive.exec.compress.intermediate=true
set hive.enforce.bucketmapjoin=true 
set mapred.output.compress=true 
set mapreduce.map.output.compress=true 
set hive.auto.convert.sortmerge.join=false 
set hive.auto.convert.join=false 
set mapreduce.reduce.speculative=false 
set PD_KEY=vijay-test-mail@XXX.pagerduty.com 
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec

/etc/hive/conf/hive-site.xml

代码语言:javascript
运行
复制
<configuration>

<!-- Hive Configuration can either be stored in this file or in the hadoop configuration files  -->
<!-- that are implied by Hadoop setup variables.                                                -->
<!-- Aside from Hadoop setup variables - this file is provided as a convenience so that Hive    -->
<!-- users do not have to edit hadoop configuration files (that may be managed as a centralized -->
<!-- resource).                                                                                 -->

<!-- Hive Execution Parameters -->


<property>
  <name>hbase.zookeeper.quorum</name>
  <value>ip-172-30-2-16.us-west-2.compute.internal</value>
  <description>http://wiki.apache.org/hadoop/Hive/HBaseIntegration</description>
</property>

<property>
  <name>hive.execution.engine</name>
  <value>tez</value>
</property>

  <property>
    <name>fs.defaultFS</name>
    <value>hdfs://ip-172-30-2-16.us-west-2.compute.internal:8020</value>
  </property>


  <property>
    <name>hive.metastore.uris</name>
    <value>thrift://ip-172-30-2-16.us-west-2.compute.internal:9083</value>
    <description>JDBC connect string for a JDBC metastore</description>
  </property>

  <property>
    <name>javax.jdo.option.ConnectionURL</name>
    <value>jdbc:mysql://ip-172-30-2-16.us-west-2.compute.internal:3306/hive?createDatabaseIfNotExist=true</value>
    <description>username to use against metastore database</description>
  </property>

  <property>
    <name>javax.jdo.option.ConnectionDriverName</name>
    <value>org.mariadb.jdbc.Driver</value>
    <description>username to use against metastore database</description>
  </property>

  <property>
    <name>javax.jdo.option.ConnectionUserName</name>
    <value>hive</value>
    <description>username to use against metastore database</description>
  </property>

  <property>
    <name>javax.jdo.option.ConnectionPassword</name>
    <value>mrN949zY9P2riCeY</value>
    <description>password to use against metastore database</description>
  </property>

  <property>
    <name>datanucleus.fixedDatastore</name>
    <value>true</value>
  </property>

  <property>
    <name>mapred.reduce.tasks</name>
    <value>-1</value>
  </property>

  <property>
    <name>mapred.max.split.size</name>
    <value>256000000</value>
  </property>

  <property>
    <name>hive.metastore.connect.retries</name>
    <value>15</value>
  </property>

  <property>
    <name>hive.optimize.sort.dynamic.partition</name>
    <value>true</value>
  </property>

  <property>
    <name>hive.async.log.enabled</name>
    <value>false</value>
  </property>

</configuration>

/etc/tez/conf/tez-site.xml

代码语言:javascript
运行
复制
<configuration>
    <property>
    <name>tez.lib.uris</name>
    <value>hdfs:///apps/tez/tez.tar.gz</value>
  </property>

  <property>
    <name>tez.use.cluster.hadoop-libs</name>
    <value>true</value>
  </property>

  <property>
    <name>tez.am.grouping.max-size</name>
    <value>134217728</value>
  </property>

  <property>
    <name>tez.runtime.intermediate-output.should-compress</name>
    <value>true</value>
  </property>

  <property>
    <name>tez.runtime.intermediate-input.is-compressed</name>
    <value>true</value>
  </property>

  <property>
    <name>tez.runtime.intermediate-output.compress.codec</name>
    <value>org.apache.hadoop.io.compress.LzoCodec</value>
  </property>

  <property>
    <name>tez.runtime.intermediate-input.compress.codec</name>
    <value>org.apache.hadoop.io.compress.LzoCodec</value>
  </property>

  <property>
    <name>tez.history.logging.service.class</name>
    <value>org.apache.tez.dag.history.logging.ats.ATSHistoryLoggingService</value>
  </property>

  <property>
    <name>tez.tez-ui.history-url.base</name>
    <value>http://ip-172-30-2-16.us-west-2.compute.internal:8080/tez-ui/</value>
  </property>
</configuration>

问题-

  1. 哪个进程删除了这个文件?对于蜂巢,这个文件应该只在那里。(此外,此文件不是由应用程序代码创建的。)
  2. 当我运行失败的查询次数时,它会通过。为什么会有暧昧的行为?
  3. 因为,我刚刚将hive-exec,hive-jdbc版本升级到2.1.0。因此,似乎有些配置属性设置错误或缺少一些属性。你能帮我找出错误的设置/漏掉的蜂巢属性吗?

注释-我将hive版本从0.13.0升级到2.1.0。在以前的版本中,所有查询都运行良好。

更新-1

当我启动另一个集群时,它运行得很好。我在同一个ETL上测试了三次。

当我在新集群上再次执行相同的操作时,它显示的是相同的异常。无法理解,为什么会发生这种模棱两可的事情。

帮助我理解这种模棱两可。

我在处理蜂巢问题上太天真了。所以,对此要少些概念性的想法。

更新-2-

使用集群公共DNS名称:50070-

2016-09-20 11:31:55,155 WARN org.apache.hadoop.hdfs.server.blockmanagement.BlockPlacementPolicy (IPC Server handler 11 on 8020): Failed to place enough replicas, still in need of 1 to reach 1 (unavailableStorages=[], storagePolicy=BlockStoragePolicy{HOT:7, storageTypes=[DISK], creationFallbacks=[], replicationFallbacks=[ARCHIVE]}, newBlock=true) For more information, please enable DEBUG log level on org.apache.hadoop.hdfs.server.blockmanagement.BlockPlacementPolicy 2016-09-20 11:31:55,155 WARN org.apache.hadoop.hdfs.protocol.BlockStoragePolicy (IPC Server handler 11 on 8020): Failed to place enough replicas: expected size is 1 but only 0 storage types can be selected (replication=1, selected=[], unavailable=[DISK], removed=[DISK], policy=BlockStoragePolicy{HOT:7, storageTypes=[DISK], creationFallbacks=[], replicationFallbacks=[ARCHIVE]}) 2016-09-20 11:31:55,155 WARN org.apache.hadoop.hdfs.server.blockmanagement.BlockPlacementPolicy (IPC Server handler 11 on 8020): Failed to place enough replicas, still in need of 1 to reach 1 (unavailableStorages=[DISK], storagePolicy=BlockStoragePolicy{HOT:7, storageTypes=[DISK], creationFallbacks=[], replicationFallbacks=[ARCHIVE]}, newBlock=true) All required storage types are unavailable: unavailableStorages=[DISK], storagePolicy=BlockStoragePolicy{HOT:7, storageTypes=[DISK], creationFallbacks=[], replicationFallbacks=[ARCHIVE]} 2016-09-20 11:31:55,155 INFO org.apache.hadoop.ipc.Server (IPC Server handler 11 on 8020): IPC Server handler 11 on 8020, call org.apache.hadoop.hdfs.protocol.ClientProtocol.addBlock from 172.30.2.207:56462 Call#7497 Retry#0 java.io.IOException: File /user/hive/warehouse/bc_kmart_3813.db/dp_internal_temp_full_load_offer_flexibility_20160920/.hive-staging_hive_2016-09-20_11-17-51_558_1222354063413369813-58/_task_tmp.-ext-10000/_tmp.000079_0 could only be replicated to 0 nodes instead of minReplication (=1). There are 1 datanode(s) running and no node(s) are excluded in this operation. at org.apache.hadoop.hdfs.server.blockmanagement.BlockManager.chooseTarget4NewBlock(BlockManager.java:1547) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getNewBlockTargets(FSNamesystem.java:3107) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getAdditionalBlock(FSNamesystem.java:3031) at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.addBlock(NameNodeRpcServer.java:724) at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.addBlock(ClientNamenodeProtocolServerSideTranslatorPB.java:492) at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java) at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:616) at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:969) at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2049) at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2045) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657) at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2043)

当我搜索这个异常的时候。我找到了这个页面- https://wiki.apache.org/hadoop/CouldOnlyBeReplicatedTo

在我的集群中,有一个32 GB磁盘空间的数据节点。

** /etc/hive/conf/hive-default.xml.template - **

代码语言:javascript
运行
复制
<property>
    <name>hive.exec.stagingdir</name>
    <value>.hive-staging</value>
    <description>Directory name that will be created inside table locations in order to support HDFS encryption. This is replaces ${hive.exec.scratchdir} for query results with the exception of read-only tables. In all cases ${hive.exec.scratchdir} is still used for other temporary files, such as job plans.</description>
  </property>

问题-

  1. 按照日志,在集群机器中创建蜂窝暂存文件夹,按照/var/log/hadoop-hdfs/hadoop-hdfs-datanode-ip-172-30-2-189.log,,那么为什么还要在s3中创建相同的文件夹呢?

更新-3-

有些例外是- LeaseExpiredException -

2016-09-21 08:53:17,995 INFO org.apache.hadoop.ipc.Server (IPC Server handler 13 on 8020): IPC Server handler 13 on 8020, call org.apache.hadoop.hdfs.protocol.ClientProtocol.complete from 172.30.2.189:42958 Call#726 Retry#0: org.apache.hadoop.hdfs.server.namenode.LeaseExpiredException: No lease on /tmp/hive/hadoop/_tez_session_dir/6ebd2d18-f5b9-4176-ab8f-d6c78124b636/.tez/application_1474442135017_0022/recovery/1/summary (inode 20326): File does not exist. Holder DFSClient_NONMAPREDUCE_1375788009_1 does not have any open files.

EN

回答 2

Stack Overflow用户

回答已采纳

发布于 2016-09-27 04:13:07

我解决了这个问题。让我详细解释一下。

即将到来的例外-

  1. LeaveExpirtedException -从HDFS方面。
  2. FileNotFoundException -来自蜂巢端(当Tez执行引擎执行DAG时)

问题场景-

  1. 我们刚刚将hive版本从0.13.0升级到2.1.0。而且,以前的版本一切都很好。零运行时异常。

解决问题的不同思路- -

  1. 首先想到的是,由于神经网络的智能,两个线程在同一块上工作。但是根据下面的设置 设置mapreduce.map.speculative=false集mapreduce.reduce.speculative=false

那是不可能的

  1. 然后,我把以下设置的计数从1,000增加到100000 - 设置hive.exec.max.dynamic.partitions.pernode=100000;

这也没用。

  1. 然后第三个想法是,在同样的过程中,映射器-1所创建的内容被另一个映射器/还原器删除了。但是,我们没有在Hveserver2,Tez日志中找到任何这样的日志。
  2. 最后,根本原因在于应用层代码本身。在hive-exec-2.1.0版本中,他们引入了新的配置属性 “hive.exec.stagingdir”:“.蜂巢-分期”

上述财产的描述-

将在表位置中创建以支持HDFS加密的目录名。这将替换查询结果的${hive.exec.scratchdir},但只读表除外.在所有情况下,${hive.exec.scratchdir}仍然用于其他临时文件,例如作业计划。

因此,如果应用程序层代码(ETL)中存在任何并发作业,并且在同一表上执行操作(重命名/删除/移动),则可能会导致此问题。

而且,在我们的例子中,两个并发作业正在同一个表上执行“插入覆盖”,这导致删除了1个映射程序的元数据文件,从而导致了这个问题。

决议-

  1. 将元数据文件位置移动到外部表(表位于S3中)。
  2. 禁用HDFS加密(如stagingdir属性描述中提到的那样)。
  3. 更改为您的应用层代码,以避免并发问题。
票数 2
EN

Stack Overflow用户

发布于 2020-12-23 03:00:35

根本原因是当文件从不同的会话中被删除时,hadoop仍然试图写入它。

票数 0
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/39547001

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档