有人知道为什么熊猫/矮胖图比清单理解慢吗?我想我可以优化我的代码,用地图代替列表理解。因为map不需要列表附加操作。
这里有一个测试:
df = pd.DataFrame(range(100000))列表理解:
%timeit -n 10 df["A"] = [x for x in df[0]]
#10 loops, best of 3: 550 ms per loopPandas地图
%timeit -n 10 df["A"] = df[0].map(lambda x: x)
#10 loops, best of 3: 797 ms per loop基于注释列表理解和映射调用相同函数f的更新,列表理解速度更快。
def f(x):
return x
%timeit -n 100 df["A"] = df[0].map(f)
#100 loops, best of 3: 475 ms per loop
%timeit -n 100 df["A"] = [f(x) for x in df[0]]
#100 loops, best of 3: 399 ms per loop发布于 2016-10-15 09:06:08
以下是我的研究结果:
清单理解:
In [33]: %timeit df["A"] = [x for x in df[0]]
10 loops, best of 3: 72.6 ms per loop简单的列赋值:
In [34]: %timeit df["A"] = df[0]
The slowest run took 5.75 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 661 µs per loop使用.map()方法:
In [35]: map_df = pd.Series(np.random.randint(0, 10**6, 100000))
In [36]: %timeit df["A"] = df[0].map(map_df)
10 loops, best of 3: 19.8 ms per loophttps://stackoverflow.com/questions/40057064
复制相似问题