首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >问答首页 >如何通过动态资源分配运行spark + cassandra + mesos (dcos)?

如何通过动态资源分配运行spark + cassandra + mesos (dcos)?
EN

Stack Overflow用户
提问于 2016-12-09 07:11:11
回答 2查看 767关注 0票数 1

在通过马拉松的每个从节点上,我们运行Mesos外部Shu浮服务。当我们在粗粒度模式下通过dcos CLI提交spark作业时,没有动态分配,一切都按预期工作。但是,当我们提交相同的任务时,动态分配会失败。

代码语言:javascript
代码运行次数:0
运行
复制
16/12/08 19:20:42 ERROR OneForOneBlockFetcher: Failed while starting block fetches
java.lang.RuntimeException: java.lang.RuntimeException: Failed to open file:/tmp/blockmgr-d4df5df4-24c9-41a3-9f26-4c1aba096814/30/shuffle_0_0_0.index
at   org.apache.spark.network.shuffle.ExternalShuffleBlockResolver.getSortBasedShuffleBlockData(ExternalShuffleBlockResolver.java:234)
...
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
...
Caused by: java.io.FileNotFoundException: /tmp/blockmgr-d4df5df4-24c9-41a3-9f26-4c1aba096814/30/shuffle_0_0_0.index (No such file or directory)

详细说明:

  • 我们使用Azure安装了带有马拉松的Mesos (DCOS)。
  • 通过我们安装的宇宙软件包:卡桑德拉,火花和马拉松-lb。
  • 我们在卡桑德拉生成了测试数据。
  • 我在笔记本电脑上安装了dcos CLI

当我按下面的方式提交工作时,一切都如预期的那样工作:

代码语言:javascript
代码运行次数:0
运行
复制
./dcos spark run --submit-args="--properties-file coarse-grained.conf --class portal.spark.cassandra.app.ProductModelPerNrOfAlerts http://marathon-lb-default.marathon.mesos:10018/jars/spark-cassandra-assembly-1.0.jar"
Run job succeeded. Submission id: driver-20161208185927-0043

代码语言:javascript
代码运行次数:0
运行
复制
cqlsh:sp> select count(*) from product_model_per_alerts_by_date ;

count
-------
476

coarse-grained.conf:

代码语言:javascript
代码运行次数:0
运行
复制
spark.cassandra.connection.host 10.32.0.17
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.executor.cores 1
spark.executor.memory 1g
spark.executor.instances 2
spark.submit.deployMode cluster
spark.cores.max 4

portal.spark.cassandra.app.ProductModelPerNrOfAlerts:

代码语言:javascript
代码运行次数:0
运行
复制
package portal.spark.cassandra.app

import org.apache.spark.sql.{SQLContext, SaveMode}
import org.apache.spark.{SparkConf, SparkContext}

object ProductModelPerNrOfAlerts {
  def main(args: Array[String]): Unit = {

     val conf = new SparkConf(true)
                    .setAppName("cassandraSpark-ProductModelPerNrOfAlerts")

     val sc = new SparkContext(conf)

     val sqlContext = new SQLContext(sc)

     import sqlContext.implicits._

     val df = sqlContext
             .read
             .format("org.apache.spark.sql.cassandra")
             .options(Map("table" -> "asset_history", "keyspace" -> "sp"))
            .load()
            .select("datestamp","product_model","nr_of_alerts")

     val dr = df
           .groupBy("datestamp","product_model")
           .avg("nr_of_alerts")
           .toDF("datestamp","product_model","nr_of_alerts")

     dr.write
          .mode(SaveMode.Overwrite)
          .format("org.apache.spark.sql.cassandra")
          .options(Map("table" -> "product_model_per_alerts_by_date", "keyspace" -> "sp"))
          .save()


     sc.stop()
 }
}

动态分配

通过马拉松,我们运行Mesos外部洗牌服务:

代码语言:javascript
代码运行次数:0
运行
复制
{
  "id": "spark-mesos-external-shuffle-service-tt",
  "container": {
     "type": "DOCKER",
     "docker": {
        "image": "jpavt/mesos-spark-hadoop:mesos-external-shuffle-service-1.0.4-2.0.1",
        "network": "BRIDGE",
        "portMappings": [
           { "hostPort": 7337, "containerPort": 7337, "servicePort": 7337 }
         ],
       "forcePullImage":true,
       "volumes": [
         {
           "containerPath": "/tmp",
           "hostPath": "/tmp",
           "mode": "RW"
         }
       ]
     }
   },
   "instances": 9,
   "cpus": 0.2,
   "mem": 512,
   "constraints": [["hostname", "UNIQUE"]]
 }

用于jpavt/mesos-spark-hadoop:mesos-external-shuffle-service-1.0.4-2.0.1:的文档

代码语言:javascript
代码运行次数:0
运行
复制
FROM mesosphere/spark:1.0.4-2.0.1
WORKDIR /opt/spark/dist
ENTRYPOINT ["./bin/spark-class", "org.apache.spark.deploy.mesos.MesosExternalShuffleService"]

现在,当我提交带有动态分配的作业时,它会失败:

代码语言:javascript
代码运行次数:0
运行
复制
./dcos spark run --submit-args="--properties-file dynamic-allocation.conf --class portal.spark.cassandra.app.ProductModelPerNrOfAlerts http://marathon-lb-default.marathon.mesos:10018/jars/spark-cassandra-assembly-1.0.jar"
 Run job succeeded. Submission id: driver-20161208191958-0047

代码语言:javascript
代码运行次数:0
运行
复制
select count(*) from product_model_per_alerts_by_date ;

count
-------
 5

dynamic-allocation.conf

代码语言:javascript
代码运行次数:0
运行
复制
spark.cassandra.connection.host 10.32.0.17
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.executor.cores 1
spark.executor.memory 1g
spark.submit.deployMode cluster
spark.cores.max 4

spark.shuffle.service.enabled true
spark.dynamicAllocation.enabled true
spark.dynamicAllocation.minExecutors 2
spark.dynamicAllocation.maxExecutors 5
spark.dynamicAllocation.cachedExecutorIdleTimeout 120s
spark.dynamicAllocation.schedulerBacklogTimeout 10s
spark.dynamicAllocation.sustainedSchedulerBacklogTimeout 20s
spark.mesos.executor.docker.volumes /tmp:/tmp:rw
spark.local.dir /tmp

来自mesos的日志:

代码语言:javascript
代码运行次数:0
运行
复制
16/12/08 19:20:42 INFO MemoryStore: Block broadcast_7_piece0 stored as bytes in memory (estimated size 18.0 KB, free 366.0 MB)
16/12/08 19:20:42 INFO TorrentBroadcast: Reading broadcast variable 7 took 21 ms
16/12/08 19:20:42 INFO MemoryStore: Block broadcast_7 stored as values in memory (estimated size 38.6 KB, free 366.0 MB)
16/12/08 19:20:42 INFO MapOutputTrackerWorker: Don't have map outputs for shuffle 0, fetching them
16/12/08 19:20:42 INFO MapOutputTrackerWorker: Doing the fetch; tracker endpoint = NettyRpcEndpointRef(spark://MapOutputTracker@10.32.0.4:45422)
16/12/08 19:20:42 INFO MapOutputTrackerWorker: Got the output locations
16/12/08 19:20:42 INFO ShuffleBlockFetcherIterator: Getting 4 non-empty blocks out of 58 blocks
16/12/08 19:20:42 INFO TransportClientFactory: Successfully created connection to /10.32.0.11:7337 after 2 ms (0 ms spent in bootstraps)
16/12/08 19:20:42 INFO ShuffleBlockFetcherIterator: Started 1 remote fetches in 13 ms
16/12/08 19:20:42 ERROR OneForOneBlockFetcher: Failed while starting block fetches java.lang.RuntimeException: java.lang.RuntimeException: Failed to open file: /tmp/blockmgr-d4df5df4-24c9-41a3-9f26-4c1aba096814/30/shuffle_0_0_0.index
at   org.apache.spark.network.shuffle.ExternalShuffleBlockResolver.getSortBasedShuffleBlockData(ExternalShuffleBlockResolver.java:234)
...
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
...
 Caused by: java.io.FileNotFoundException: /tmp/blockmgr-d4df5df4-24c9-41a3-9f26-4c1aba096814/30/shuffle_0_0_0.index (No such file or directory)

来自马拉松spark-mesos-external-shuffle-service-tt:日志

代码语言:javascript
代码运行次数:0
运行
复制
...
16/12/08 19:20:29 INFO MesosExternalShuffleBlockHandler: Received registration request from app 704aec43-1aa3-4971-bb98-e892beeb2c45-0008-driver-20161208191958-0047 (remote address /10.32.0.4:49710, heartbeat timeout 120000 ms).
16/12/08 19:20:31 INFO ExternalShuffleBlockResolver: Registered executor AppExecId{appId=704aec43-1aa3-4971-bb98-e892beeb2c45-0008-driver-20161208191958-0047, execId=2} with ExecutorShuffleInfo{localDirs=[/tmp/blockmgr-14525ef0-22e9-49fb-8e81-dc84e5fba8b2], subDirsPerLocalDir=64, shuffleManager=org.apache.spark.shuffle.sort.SortShuffleManager}
16/12/08 19:20:38 ERROR TransportRequestHandler: Error while invoking RpcHandler#receive() on RPC id 8157825166903585542
java.lang.RuntimeException: Failed to open file: /tmp/blockmgr-14525ef0-22e9-49fb-8e81-dc84e5fba8b2/16/shuffle_0_55_0.index
at org.apache.spark.network.shuffle.ExternalShuffleBlockResolver.getSortBasedShuffleBlockData(ExternalShuffleBlockResolver.java:234)
...
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
Caused by: java.io.FileNotFoundException: /tmp/blockmgr-14525ef0-22e9-49fb-8e81-dc84e5fba8b2/16/shuffle_0_55_0.index (No such file or directory)
...

但是文件存在于给定的从框上:

代码语言:javascript
代码运行次数:0
运行
复制
$ ls -l /tmp/blockmgr-14525ef0-22e9-49fb-8e81-dc84e5fba8b2/16/shuffle_0_55_0.index
-rw-r--r-- 1 root root 1608 Dec  8 19:20 /tmp/blockmgr-14525ef0-22e9-49fb-8e81-dc84e5fba8b2/16/shuffle_0_55_0.index


 stat shuffle_0_55_0.index 
  File: 'shuffle_0_55_0.index'
  Size: 1608        Blocks: 8          IO Block: 4096   regular file
  Device: 801h/2049d    Inode: 1805493     Links: 1
  Access: (0644/-rw-r--r--)  Uid: (    0/    root)   Gid: (    0/    root)
  Access: 2016-12-08 19:20:38.163188836 +0000
  Modify: 2016-12-08 19:20:38.163188836 +0000
  Change: 2016-12-08 19:20:38.163188836 +0000
  Birth: -
EN

回答 2

Stack Overflow用户

回答已采纳

发布于 2016-12-12 14:06:44

在马拉松式外部洗牌服务配置中出现错误,而不是路径container.docker.volumes,我们应该使用container.volumes路径。

正确配置:

代码语言:javascript
代码运行次数:0
运行
复制
{
  "id": "mesos-external-shuffle-service-simple",
  "container": {
     "type": "DOCKER",
     "docker": {
        "image": "jpavt/mesos-spark-hadoop:mesos-external-shuffle-service-1.0.4-2.0.1",
        "network": "BRIDGE",
        "portMappings": [
           { "hostPort": 7337, "containerPort": 7337, "servicePort": 7337 }
         ],
       "forcePullImage":true
     },
    "volumes": [
         {
           "containerPath": "/tmp",
           "hostPath": "/tmp",
           "mode": "RW"
         }
    ]
   },
   "instances": 9,
   "cpus": 0.2,
   "mem": 512,
   "constraints": [["hostname", "UNIQUE"]]
 }
票数 0
EN

Stack Overflow用户

发布于 2016-12-10 03:47:40

我不熟悉DCOS,马拉松和Azure,我使用动态资源分配( Mesos外部洗牌服务)在Mesos和Aurora与Docker。

  • 每个Mesos代理节点都有自己的外部洗牌服务(即一个mesos代理的一个外部洗牌服务)?
  • spark.local.dir设置是完全相同的字符串和指向相同的目录?不过,您的洗牌spark.local.dir服务是/tmp,我不知道DCOS设置。
  • spark.local.dir目录对两者都可以读/写吗?如果码头启动了mesos代理和外部洗牌服务,则必须将主机上的spark.local.dir安装到两个容器上。

编辑

  • 如果设置了SPARK_LOCAL_DIRS (mesos或独立的)环境变量,spark.local.dir将被重写。
票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/41054952

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档