利用SVM分类器建立了情感分析器。我用probability=True训练模型,它可以给我概率。但是,当我将我的模型腌制并在以后再次加载时,这个概率就不再起作用了。
模式:
from sklearn.svm import SVC, LinearSVC
pipeline_svm = Pipeline([
('bow', CountVectorizer()),
('tfidf', TfidfTransformer()),
('classifier', SVC(probability=True)),])
# pipeline parameters to automatically explore and tune
param_svm = [
{'classifier__C': [1, 10, 100, 1000], 'classifier__kernel': ['linear']},
{'classifier__C': [1, 10, 100, 1000], 'classifier__gamma': [0.001, 0.0001], 'classifier__kernel': ['rbf']},
]
grid_svm = GridSearchCV(
pipeline_svm,
param_grid=param_svm,
refit=True,
n_jobs=-1,
scoring='accuracy',
cv=StratifiedKFold(label_train, n_folds=5),)
svm_detector_reloaded = cPickle.load(open('svm_sentiment_analyzer.pkl', 'rb'))
print(svm_detector_reloaded.predict([""""Today is awesome day"""])[0])给我:
AttributeError: predict_proba在probability=False时不可用
发布于 2020-03-12 23:03:48
用途:SVM(probability=True)
或
grid_svm = GridSearchCV(
probability=True
pipeline_svm,
param_grid=param_svm,
refit=True,
n_jobs=-1,
scoring='accuracy',
cv=StratifiedKFold(label_train, n_folds=5),)发布于 2020-12-29 23:48:00
添加(probability=True)时,根据上面的建议初始化分类器,解决了我的错误:
clf = SVC(kernel='rbf', C=1e9, gamma=1e-07, probability=True).fit(xtrain,ytrain)发布于 2019-11-22 16:15:39
您可以使用CallibratedClassifierCV进行概率分数输出。
from sklearn.calibration import CalibratedClassifierCV
model_svc = LinearSVC()
model = CalibratedClassifierCV(model_svc)
model.fit(X_train, y_train)使用泡菜保存模型。
import pickle
filename = 'linearSVC.sav'
pickle.dump(model, open(filename, 'wb'))基于pickle.load的负载模型。
model = pickle.load(open(filename, 'rb'))
现在开始预测。
pred_class = model.predict(pred)
probability = model.predict_proba(pred)https://stackoverflow.com/questions/43036711
复制相似问题