我正试图在我的函数x[1]
和x[2]
中获得更精确的(最多6位小数点)估计值,名为GGG
。
使用optim
,我可以得到一些最高可达小数点3位的精度,但我想知道如何将精度提高到至少6位小数点呢?
optimize
和nlm
可以用于这个目标吗?
GGG = function(Low, High, p1, p2) {
f <- function(x) {
y <- c(Low, High) - qcauchy(c(p1, p2), location=x[1], scale=x[2])
}
## SOLVE:
AA <- optim(c(1,1), function(x) sum(f(x)^2) )
## return parameters:
parms = unname(AA$par)
return(parms) ## Correct but up to 3 decimal places
}
## TEST:
AAA <- GGG (Low = -3, High = 3, p1 = .025, p2 = .975)
## CHECK:
q <- qcauchy( c(.025, .975), AAA[1], AAA[2] ) # What comes out of "q" MUST match "Low" and
# "High" up to 6 decimal places
发布于 2017-04-24 23:24:06
optim函数有一个公差控制参数。将optim函数替换为:
AA <- optim(c(1,1), function(x) sum(f(x)^2), control=list(reltol=(.Machine$double.eps)))
返回:
> q
[1] -3 3
> AAA
[1] 5.956798e-08 2.361051e-01
https://stackoverflow.com/questions/43599107
复制相似问题