更新的问题:我这样做了,但是我在精度和回忆方面都得到了相同的结果,这是因为我使用的是average ='binary'。
但是,当我使用average='macro'时,我会得到以下错误消息:
测试自定义评审messageC:\Python27\lib\site-packages\sklearn\metrics\classification.py:976: DeprecationWarning:从0.18版本开始,当使用平均精度/召回/F-得分时,二进制输入将不会被专门处理。请使用average=‘二进制’只报告正面的类性能。 “积极的课堂表现。”,DeprecationWarning)
以下是我更新的代码:
path = 'opinions.tsv'
data = pd.read_table(path,header=None,skiprows=1,names=['Sentiment','Review'])
X = data.Review
y = data.Sentiment
#Using CountVectorizer to convert text into tokens/features
vect = CountVectorizer(stop_words='english', ngram_range = (1,1), max_df = .80, min_df = 4)
X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=1, test_size= 0.2)
#Using training data to transform text into counts of features for each message
vect.fit(X_train)
X_train_dtm = vect.transform(X_train) 
X_test_dtm = vect.transform(X_test)
#Accuracy using KNN Model
KNN = KNeighborsClassifier(n_neighbors = 3)
KNN.fit(X_train_dtm, y_train)
y_pred = KNN.predict(X_test_dtm)
print('\nK Nearest Neighbors (NN = 3)')
#Naive Bayes Analysis
tokens_words = vect.get_feature_names()
print '\nAnalysis'
print'Accuracy Score: %f %%'% (metrics.accuracy_score(y_test,y_pred)*100)
print "Precision Score: %f%%" %  precision_score(y_test,y_pred, average='binary')
print "Recall Score: %f%%" %  recall_score(y_test,y_pred, average='binary')通过使用上面的代码,我获得了相同的精度和召回值。
谢谢你回答我的问题,非常感谢。
发布于 2017-08-11 16:32:07
要计算精密度和召回度量,您应该从sklearn.metrics导入相应的方法。
如文档中所述,它们的参数是由真标签和预测标签组成的一维数组:
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
y_true = [0, 1, 2, 0, 1, 2]
y_pred = [0, 2, 1, 0, 0, 1]
print('Calculating the metrics...')
recision_score(y_true, y_pred, average='macro')
>>> 0.22
recall_score(y_true, y_pred, average='macro')
>>> 0.33https://stackoverflow.com/questions/45639240
复制相似问题