首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >如何添加所需点数的叠加?

如何添加所需点数的叠加?
EN

Stack Overflow用户
提问于 2017-10-18 10:43:42
回答 1查看 660关注 0票数 1

我试图训练形状预测器,并面对一个问题,即add_overlay函数需要68个点中的5个。那么,我怎样才能添加一个46点的叠加呢?下面是代码,与文档中的示例中的代码几乎相同。

代码语言:javascript
复制
#!/usr/bin/python
import os
import sys
import glob

import dlib
from skimage import io



if len(sys.argv) != 2:
    print(
        "Give the path to the examples/faces directory as the argument to this "
        "program. For example, if you are in the python_examples folder then "
        "execute this program by running:\n"
        "    ./train_shape_predictor.py ../examples/faces")
    exit()
faces_folder = sys.argv[1]

options = dlib.shape_predictor_training_options()

options.oversampling_amount = 500

options.tree_depth = 2
options.be_verbose = True

training_xml_path = os.path.join(faces_folder, "women_test.xml")
dlib.train_shape_predictor(training_xml_path, "predictor.dat", options)

print("\nTraining accuracy: {}".format(
    dlib.test_shape_predictor(training_xml_path, "predictor.dat")))

predictor = dlib.shape_predictor("predictor.dat")
detector = dlib.simple_object_detector("detector.svm")


print("Showing detections and predictions on the images in the objects folder...")
win = dlib.image_window()
for f in glob.glob(os.path.join(faces_folder, "*.jpg")):
    print("Processing file: {}".format(f))
    img = io.imread(f)

    win.clear_overlay()
    win.set_image(img)

    dets = detector(img, 1)
    print("Number of faces detected: {}".format(len(dets)))
    for k, d in enumerate(dets):
        print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
            k, d.left(), d.top(), d.right(), d.bottom()))
        shape = predictor(img, d)
        print("Part 0: {}, Part 1: {} ...".format(shape.part(0),
                                                  shape.part(1)))
        win.add_overlay(shape)

    win.add_overlay(dets)
    dlib.hit_enter_to_continue()

输出日志:

代码语言:javascript
复制
Training with cascade depth: 10
Training with tree depth: 2
Training with 500 trees per cascade level.
Training with nu: 0.05
Training with random seed: 
Training with oversampling amount: 500
Training with feature pool size: 400
Training with feature pool region padding: 0
Training with lambda_param: 0.1
Training with 20 split tests.
Fitting trees...
Training complete                           
Training complete, saved predictor to file predictor.dat

Training accuracy: 0.0
Showing detections and predictions on the images in the faces folder...
Processing file: img/women/women5.jpg
Number of faces detected: 1
Detection 0: Left: 290 Top: 498 Right: 646 Bottom: 676
Part 0: (317, 564), Part 1: (319, 582) ...
Traceback (most recent call last):
  File "train_shape_detector.py", line 131, in <module>
    win.add_overlay(shape)
RuntimeError: 

Error detected at line 25.
Error detected in file /tmp/pip-build-867r6kjx/dlib/dlib/../dlib/image_processing/render_face_detections.h.
Error detected in function std::vector<dlib::image_display::overlay_line> dlib::render_face_detections(const std::vector<dlib::full_object_detection>&, dlib::rgb_pixel).

Failing expression was dets[i].num_parts() == 68 || dets[i].num_parts() == 5.
     std::vector<image_window::overlay_line> render_face_detections()
     You have to give either a 5 point or 68 point face landmarking output to this function. 
     dets[0].num_parts():  46
EN

回答 1

Stack Overflow用户

回答已采纳

发布于 2017-10-20 08:05:46

您使用的是dlib窗口,该窗口检查检测到的点数为5或68个。

在你的例子中,你得到了46分。您需要在cv2窗口上显示图像。

代码语言:javascript
复制
def annotate_landmarks(image, landmarks):
"""
Given image and a set of landmark points, annotates the points for viewing
:param image: Input image
:type image: np.array
:param landmarks: set of facial landmark points
:type landmarks: [(float, float)]
:return: Resulting annotated image
:rtype: np.array
"""
image = image.copy()
for idx, point in enumerate(landmarks):
    pos = (point[0, 0], point[0, 1])
    cv2.putText(image, str(idx), pos,
                fontFace=cv2.FONT_HERSHEY_SCRIPT_SIMPLEX,
                fontScale=0.4,
                color=(0, 0, 255))
    cv2.circle(image, pos, 3, color=(0, 255, 255))
return image

现在使用注释函数来显示结果。

代码语言:javascript
复制
new_img = img
for k, d in enumerate(dets):
    shape = predictor(new_img, d)
    new_img = annotate_landmarks(new_img, shape)

cv2.imshow(new_image)
cv2.waitkey()

注意:这个函数现在可以直接插入到您的需求中。检查传入annotate_landmarks函数的annotate_landmarks类型

票数 2
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/46808329

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档