我有一个相对较大的数据集,我想根据包含日期时间对象的列,在Python中分割成多个数据格式。列中的值(我希望用它来分割数据)是以以下格式提供的:
2015-11-01 00:00:05
如何通过以下方式将将数据分割为5秒间隔的:
2015-11-01 00:00:00 - 2015-11-01 00:00:05
,2015-11-01 00:00:05 - 2015-11-01 00:00:10
,等等。我还需要在每个结果数据中计算观察的数量。换句话说,如果我能够获得另一个带有2列的数据格式(所需的输出格式如下所示),那就更好了:
发布于 2017-11-06 09:09:31
创建dictionary of DataFrame
并使用assign
添加新列
rng = pd.date_range('2015-11-01 00:00:00', periods=100, freq='S')
df = pd.DataFrame({'Date': rng, 'a': range(100)})
print (df.head(10))
Date a
0 2015-11-01 00:00:00 0
1 2015-11-01 00:00:01 1
2 2015-11-01 00:00:02 2
3 2015-11-01 00:00:03 3
4 2015-11-01 00:00:04 4
5 2015-11-01 00:00:05 5
6 2015-11-01 00:00:06 6
7 2015-11-01 00:00:07 7
8 2015-11-01 00:00:08 8
9 2015-11-01 00:00:09 9
g = df.groupby(pd.Grouper(key='Date', freq='5S'))
dfs = {k.strftime('%Y-%m-%d %H:%M:%S'):v.assign(A=range(1,len(v)+1), B=len(v)) for k,v in g}
print (dfs['2015-11-01 00:00:05'])
Date a A B
5 2015-11-01 00:00:05 5 1 5
6 2015-11-01 00:00:06 6 2 5
7 2015-11-01 00:00:07 7 3 5
8 2015-11-01 00:00:08 8 4 5
9 2015-11-01 00:00:09 9 5 5
如果需要先计数行数,则将size
和Interval
添加到索引中:
df1 = df.groupby(pd.Grouper(key='Date', freq='5S')).size().reset_index(name='Count')
df1['Interval'] = df1.index + 1
print (df1.head())
Date Count Interval
0 2015-11-01 00:00:00 5 1
1 2015-11-01 00:00:05 5 2
2 2015-11-01 00:00:10 5 3
3 2015-11-01 00:00:15 5 4
4 2015-11-01 00:00:20 5 5
https://stackoverflow.com/questions/47133250
复制相似问题