我有Dataframe,可以简化为:
import pandas as pd
df = pd.DataFrame([{
'title': 'batman',
'text': 'man bat man bat',
'url': 'batman.com',
'label':1},
{'title': 'spiderman',
'text': 'spiderman man spider',
'url': 'spiderman.com',
'label':1},
{'title': 'doctor evil',
'text': 'a super evil doctor',
'url': 'evilempyre.com',
'label':0},])
我也想尝试不同的特征提取方法: TFIDF、word2vec、Coutvectorizer等,但我想尝试不同的组合:一个特征集将包含用TFIDF转换的' text‘数据,而'url’则由Countvectoriser转换而来,第二个特征集将由w2v转换文本数据,以及由TFIDF转换'url‘等等。最后,当然,我想对不同的预处理策略进行比较,并选择最佳的预处理策略。
以下是一些问题:
非常感谢!
发布于 2017-12-20 18:45:44
@elphz答案是一个很好的介绍,您可以使用FeatureUnion
和FunctionTransformer
来完成这一任务,但我认为它需要更多的细节。
首先,我想说,您需要定义您的FunctionTransformer
函数,以便它们能够正确地处理和返回您的输入数据。在这种情况下,我假设您只是想传递DataFrame,但要确保返回一个正确形状的数组供下游使用。因此,我建议只传递DataFrame并按列名进行访问。就像这样:
def text(X):
return X.text.values
def title(X):
return X.title.values
pipe_text = Pipeline([('col_text', FunctionTransformer(text, validate=False))])
pipe_title = Pipeline([('col_title', FunctionTransformer(title, validate=False))])
现在,测试变压器和分类器的变化。我建议使用一个变压器列表和一个分类器列表,然后简单地迭代它们,就像网格搜索一样。
tfidf = TfidfVectorizer()
cv = CountVectorizer()
lr = LogisticRegression()
rc = RidgeClassifier()
transformers = [('tfidf', tfidf), ('cv', cv)]
clfs = [lr, rc]
best_clf = None
best_score = 0
for tran1 in transformers:
for tran2 in transformers:
pipe1 = Pipeline(pipe_text.steps + [tran1])
pipe2 = Pipeline(pipe_title.steps + [tran2])
union = FeatureUnion([('text', pipe1), ('title', pipe2)])
X = union.fit_transform(df)
X_train, X_test, y_train, y_test = train_test_split(X, df.label)
for clf in clfs:
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
if score > best_score:
best_score = score
best_est = clf
这是一个简单的例子,但您可以看到如何以这种方式插入各种转换和分类器。
发布于 2018-10-08 13:36:35
查看以下链接:union.html
class ItemSelector(BaseEstimator, TransformerMixin):
def __init__(self, key):
self.key = key
def fit(self, x, y=None):
return self
def transform(self, data_dict):
return data_dict[self.key]
键值接受熊猫dataframe列标签。在您的管道中使用它时,可以将其应用于:
('tfidf_word', Pipeline([
('selector', ItemSelector(key='column_name')),
('tfidf', TfidfVectorizer())),
]))
发布于 2017-12-19 22:58:41
我将使用FunctionTransformer的组合只选择特定的列,然后使用FeatureUnion在每一列上组合TFIDF、word计数等特性。可能有一种稍微更干净的方法,但我认为您最终会得到某种FeatureUnion和管道嵌套。
from sklearn.preprocessing import FunctionTransformer
from sklearn.pipeline import FeatureUnion, Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
def first_column(X):
return X.iloc[:, 0]
def second_column(X):
return X.iloc[:, 1]
# pipeline to get all tfidf and word count for first column
pipeline_one = Pipeline([
('column_selection', FunctionTransformer(first_column, validate=False)),
('feature-extractors', FeatureUnion([('tfidf', TfidfVectorizer()),
('counts', CountVectorizer())
]))
])
# Then a second pipeline to do the same for the second column
pipeline_two = Pipeline([
('column_selection', FunctionTransformer(second_column, validate=False)),
('feature-extractors', FeatureUnion([('tfidf', TfidfVectorizer()),
('counts', CountVectorizer())
]))
])
# Then you would again feature union these pipelines
# to get different feature selection for each column
final_transformer = FeatureUnion([('first-column-features', pipeline_one),
('second-column-feature', pipeline_two)])
# Your dataframe has your target as the first column, so make sure to drop first
y = df['label']
df = df.drop('label', axis=1)
# Now fit transform should work
final_transformer.fit_transform(df)
如果您不想将多个转换器应用到每一列(tfidf和计数都可能没有用),那么您可以将嵌套减少一个步骤。
https://stackoverflow.com/questions/47895434
复制相似问题