首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >ModuleNotFoundError:没有名为“adspy_shared_utilities”的模块

ModuleNotFoundError:没有名为“adspy_shared_utilities”的模块
EN

Stack Overflow用户
提问于 2017-12-29 07:54:23
回答 6查看 13.6K关注 0票数 3

我试图用adspy包绘制KNN分类器的决策边界,但是每当我使用这个包时,它就不是导入的。我已经使用conda提示符下载了几次,但是什么也没有发生。

带有错误信息的代码:

代码语言:javascript
运行
复制
from adspy_shared_utilities import plot_fruit_knn

plot_fruit_knn(X_train, y_train, 5, 'uniform')


ModuleNotFoundError                       Traceback (most recent call last)
<ipython-input-7-ddf0c07df9f1> in <module>()
----> 1 from adspy_shared_utilities import plot_fruit_knn
      2 
      3 plot_fruit_knn(X_train, y_train, 5, 'uniform')

ModuleNotFoundError: No module named 'adspy_shared_utilities'

我该怎么解决这个问题?

EN

Stack Overflow用户

发布于 2020-01-23 05:00:54

如果您正在寻找脚本,请将下面的adspy_shared_utilities代码复制到与您的python脚本相同的文件夹中

代码语言:javascript
运行
复制
import numpy
import pandas as pd
import seaborn as sn
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.colors import ListedColormap, BoundaryNorm
from sklearn import neighbors
import matplotlib.patches as mpatches
import graphviz
from sklearn.tree import export_graphviz
import matplotlib.patches as mpatches

def load_crime_dataset():
    # Communities and Crime dataset for regression
    # https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized

    crime = pd.read_table('readonly/CommViolPredUnnormalizedData.txt', sep=',', na_values='?')
    # remove features with poor coverage or lower relevance, and keep ViolentCrimesPerPop target column
    columns_to_keep = [5, 6] + list(range(11,26)) + list(range(32, 103)) + [145]  
    crime = crime.ix[:,columns_to_keep].dropna()

    X_crime = crime.ix[:,range(0,88)]
    y_crime = crime['ViolentCrimesPerPop']

    return (X_crime, y_crime)

def plot_decision_tree(clf, feature_names, class_names):
    # This function requires the pydotplus module and assumes it's been installed.
    # In some cases (typically under Windows) even after running conda install, there is a problem where the
    # pydotplus module is not found when running from within the notebook environment.  The following code
    # may help to guarantee the module is installed in the current notebook environment directory.
    #
    # import sys; sys.executable
    # !{sys.executable} -m pip install pydotplus

    export_graphviz(clf, out_file="adspy_temp.dot", feature_names=feature_names, class_names=class_names, filled = True, impurity = False)
    with open("adspy_temp.dot") as f:
        dot_graph = f.read()
    # Alternate method using pydotplus, if installed.
    # graph = pydotplus.graphviz.graph_from_dot_data(dot_graph)
    # return graph.create_png()
    return graphviz.Source(dot_graph)

def plot_feature_importances(clf, feature_names):
    c_features = len(feature_names)
    plt.barh(range(c_features), clf.feature_importances_)
    plt.xlabel("Feature importance")
    plt.ylabel("Feature name")
    plt.yticks(numpy.arange(c_features), feature_names)

def plot_labelled_scatter(X, y, class_labels):
    num_labels = len(class_labels)

    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

    marker_array = ['o', '^', '*']
    color_array = ['#FFFF00', '#00AAFF', '#000000', '#FF00AA']
    cmap_bold = ListedColormap(color_array)
    bnorm = BoundaryNorm(numpy.arange(0, num_labels + 1, 1), ncolors=num_labels)
    plt.figure()

    plt.scatter(X[:, 0], X[:, 1], s=65, c=y, cmap=cmap_bold, norm = bnorm, alpha = 0.40, edgecolor='black', lw = 1)

    plt.xlim(x_min, x_max)
    plt.ylim(y_min, y_max)

    h = []
    for c in range(0, num_labels):
        h.append(mpatches.Patch(color=color_array[c], label=class_labels[c]))
    plt.legend(handles=h)

    plt.show()


def plot_class_regions_for_classifier_subplot(clf, X, y, X_test, y_test, title, subplot, target_names = None, plot_decision_regions = True):

    numClasses = numpy.amax(y) + 1
    color_list_light = ['#FFFFAA', '#EFEFEF', '#AAFFAA', '#AAAAFF']
    color_list_bold = ['#EEEE00', '#000000', '#00CC00', '#0000CC']
    cmap_light = ListedColormap(color_list_light[0:numClasses])
    cmap_bold  = ListedColormap(color_list_bold[0:numClasses])

    h = 0.03
    k = 0.5
    x_plot_adjust = 0.1
    y_plot_adjust = 0.1
    plot_symbol_size = 50

    x_min = X[:, 0].min()
    x_max = X[:, 0].max()
    y_min = X[:, 1].min()
    y_max = X[:, 1].max()
    x2, y2 = numpy.meshgrid(numpy.arange(x_min-k, x_max+k, h), numpy.arange(y_min-k, y_max+k, h))

    P = clf.predict(numpy.c_[x2.ravel(), y2.ravel()])
    P = P.reshape(x2.shape)

    if plot_decision_regions:
        subplot.contourf(x2, y2, P, cmap=cmap_light, alpha = 0.8)

    subplot.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, s=plot_symbol_size, edgecolor = 'black')
    subplot.set_xlim(x_min - x_plot_adjust, x_max + x_plot_adjust)
    subplot.set_ylim(y_min - y_plot_adjust, y_max + y_plot_adjust)

    if (X_test is not None):
        subplot.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cmap_bold, s=plot_symbol_size, marker='^', edgecolor = 'black')
        train_score = clf.score(X, y)
        test_score  = clf.score(X_test, y_test)
        title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)

    subplot.set_title(title)

    if (target_names is not None):
        legend_handles = []
        for i in range(0, len(target_names)):
            patch = mpatches.Patch(color=color_list_bold[i], label=target_names[i])
            legend_handles.append(patch)
        subplot.legend(loc=0, handles=legend_handles)


def plot_class_regions_for_classifier(clf, X, y, X_test=None, y_test=None, title=None, target_names = None, plot_decision_regions = True):

    numClasses = numpy.amax(y) + 1
    color_list_light = ['#FFFFAA', '#EFEFEF', '#AAFFAA', '#AAAAFF']
    color_list_bold = ['#EEEE00', '#000000', '#00CC00', '#0000CC']
    cmap_light = ListedColormap(color_list_light[0:numClasses])
    cmap_bold  = ListedColormap(color_list_bold[0:numClasses])

    h = 0.03
    k = 0.5
    x_plot_adjust = 0.1
    y_plot_adjust = 0.1
    plot_symbol_size = 50

    x_min = X[:, 0].min()
    x_max = X[:, 0].max()
    y_min = X[:, 1].min()
    y_max = X[:, 1].max()
    x2, y2 = numpy.meshgrid(numpy.arange(x_min-k, x_max+k, h), numpy.arange(y_min-k, y_max+k, h))

    P = clf.predict(numpy.c_[x2.ravel(), y2.ravel()])
    P = P.reshape(x2.shape)
    plt.figure()
    if plot_decision_regions:
        plt.contourf(x2, y2, P, cmap=cmap_light, alpha = 0.8)

    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, s=plot_symbol_size, edgecolor = 'black')
    plt.xlim(x_min - x_plot_adjust, x_max + x_plot_adjust)
    plt.ylim(y_min - y_plot_adjust, y_max + y_plot_adjust)

    if (X_test is not None):
        plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cmap_bold, s=plot_symbol_size, marker='^', edgecolor = 'black')
        train_score = clf.score(X, y)
        test_score  = clf.score(X_test, y_test)
        title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)

    if (target_names is not None):
        legend_handles = []
        for i in range(0, len(target_names)):
            patch = mpatches.Patch(color=color_list_bold[i], label=target_names[i])
            legend_handles.append(patch)
        plt.legend(loc=0, handles=legend_handles)

    if (title is not None):
        plt.title(title)
    plt.show()

def plot_fruit_knn(X, y, n_neighbors, weights):
    X_mat = X[['height', 'width']].as_matrix()
    y_mat = y.as_matrix()

    # Create color maps
    cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF','#AFAFAF'])
    cmap_bold  = ListedColormap(['#FF0000', '#00FF00', '#0000FF','#AFAFAF'])

    clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
    clf.fit(X_mat, y_mat)

    # Plot the decision boundary by assigning a color in the color map
    # to each mesh point.

    mesh_step_size = .01  # step size in the mesh
    plot_symbol_size = 50

    x_min, x_max = X_mat[:, 0].min() - 1, X_mat[:, 0].max() + 1
    y_min, y_max = X_mat[:, 1].min() - 1, X_mat[:, 1].max() + 1
    xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, mesh_step_size),
                         numpy.arange(y_min, y_max, mesh_step_size))
    Z = clf.predict(numpy.c_[xx.ravel(), yy.ravel()])

    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.figure()
    plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

    # Plot training points
    plt.scatter(X_mat[:, 0], X_mat[:, 1], s=plot_symbol_size, c=y, cmap=cmap_bold, edgecolor = 'black')
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())

    patch0 = mpatches.Patch(color='#FF0000', label='apple')
    patch1 = mpatches.Patch(color='#00FF00', label='mandarin')
    patch2 = mpatches.Patch(color='#0000FF', label='orange')
    patch3 = mpatches.Patch(color='#AFAFAF', label='lemon')
    plt.legend(handles=[patch0, patch1, patch2, patch3])


    plt.xlabel('height (cm)')
    plt.ylabel('width (cm)')

    plt.show()

def plot_two_class_knn(X, y, n_neighbors, weights, X_test, y_test):
    X_mat = X
    y_mat = y

    # Create color maps
    cmap_light = ListedColormap(['#FFFFAA', '#AAFFAA', '#AAAAFF','#EFEFEF'])
    cmap_bold  = ListedColormap(['#FFFF00', '#00FF00', '#0000FF','#000000'])

    clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
    clf.fit(X_mat, y_mat)

    # Plot the decision boundary by assigning a color in the color map
    # to each mesh point.

    mesh_step_size = .01  # step size in the mesh
    plot_symbol_size = 50

    x_min, x_max = X_mat[:, 0].min() - 1, X_mat[:, 0].max() + 1
    y_min, y_max = X_mat[:, 1].min() - 1, X_mat[:, 1].max() + 1
    xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, mesh_step_size),
                         numpy.arange(y_min, y_max, mesh_step_size))
    Z = clf.predict(numpy.c_[xx.ravel(), yy.ravel()])

    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.figure()
    plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

    # Plot training points
    plt.scatter(X_mat[:, 0], X_mat[:, 1], s=plot_symbol_size, c=y, cmap=cmap_bold, edgecolor = 'black')
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())

    title = "Neighbors = {}".format(n_neighbors)
    if (X_test is not None):
        train_score = clf.score(X_mat, y_mat)
        test_score  = clf.score(X_test, y_test)
        title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)

    patch0 = mpatches.Patch(color='#FFFF00', label='class 0')
    patch1 = mpatches.Patch(color='#000000', label='class 1')
    plt.legend(handles=[patch0, patch1])

    plt.xlabel('Feature 0')
    plt.ylabel('Feature 1')
    plt.title(title)

    plt.show()
票数 0
EN
查看全部 6 条回答
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/48019360

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档