我试着训练我的模型,我的成本产出每一个时代都在减少,直到它达到接近于零的值,然后转到负值,我想知道是什么意思,负成本产出是什么意思?
Cost after epoch 0: 3499.608553
Cost after epoch 1: 2859.823284
Cost after epoch 2: 1912.205967
Cost after epoch 3: 1041.337282
Cost after epoch 4: 385.100483
Cost after epoch 5: 19.694999
Cost after epoch 6: 0.293331
Cost after epoch 7: 0.244265
Cost after epoch 8: 0.198684
Cost after epoch 9: 0.156083
Cost after epoch 10: 0.117224
Cost after epoch 11: 0.080965
Cost after epoch 12: 0.047376
Cost after epoch 13: 0.016184
Cost after epoch 14: -0.012692
Cost after epoch 15: -0.039486
Cost after epoch 16: -0.064414
Cost after epoch 17: -0.087688
Cost after epoch 18: -0.109426
Cost after epoch 19: -0.129873
Cost after epoch 20: -0.149069
Cost after epoch 21: -0.169113
Cost after epoch 22: -0.184217
Cost after epoch 23: -0.200351
Cost after epoch 24: -0.215847
Cost after epoch 25: -0.230574
Cost after epoch 26: -0.245604
Cost after epoch 27: -0.259469
Cost after epoch 28: -0.272469
Cost after epoch 29: -0.284447我是用tensorflow训练的,它是一个简单的神经网络,有两个隐层,learning_rate =0.0001,number_of_epoch=30,小批大小=50,训练测试比=69/29,所有的数据集都是101434的训练样本,费用是用交叉熵方程计算的。
tf.nn.sigmoid_cross_entropy_with_logits(logits=Z3, labels=Y)发布于 2018-01-27 21:11:03
这意味着标签不符合成本函数所期望的格式。
传递给sigmoid_cross_entropy_with_logits的每个标签应该是0或1(对于二进制分类)或包含0和1的向量(对于多个类)。否则,它将不能像预期的那样工作。
对于n类,输出层应该有n单元,在将它们传递给sigmoid_cross_entropy_with_logits之前,标签应该按照这种方式进行编码。
Y = tf.one_hot(Y, n)这假设Y是一个从0到n-1的列表或一维标签数组。
https://stackoverflow.com/questions/48480020
复制相似问题