下面的代码是对谷歌BigQuery的SQL查询,它计算了我的PyPI包在过去30天内下载的次数。
#standardSQL
SELECT COUNT(*) AS num_downloads
FROM `the-psf.pypi.downloads*`
WHERE file.project = 'pycotools'
-- Only query the last 30 days of history
AND _TABLE_SUFFIX
BETWEEN FORMAT_DATE(
'%Y%m%d', DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY))
AND FORMAT_DATE('%Y%m%d', CURRENT_DATE())
是否有可能修改这个查询,使我获得自软件包上传后每30天下载一次的次数?输出将是一个类似于以下内容的.csv
:
date count
01-01-2016 10
01-02-2016 20
.. ..
01-05-2018 100
发布于 2018-07-10 22:26:13
我建议使用提取或月份(),并且只计算file.project字段,因为它将使查询运行得更快。您可以使用的查询是:
#standardSQL
SELECT
EXTRACT(MONTH FROM _PARTITIONDATE) AS month_,
EXTRACT(YEAR FROM _PARTITIONDATE) AS year_,
count(file.project) as count
FROM
`the-psf.pypi.downloads*`
WHERE
file.project= 'pycotools'
GROUP BY 1, 2
ORDER by 1 ASC
我在公共数据集上尝试过:
#standardSQL
SELECT
EXTRACT(MONTH FROM pickup_datetime) AS month_,
EXTRACT(YEAR FROM pickup_datetime) AS year_,
count(rate_code) as count
FROM
`nyc-tlc.green.trips_2015`
WHERE
rate_code=5
GROUP BY 1, 2
ORDER by 1 ASC
或者使用遗产
SELECT
MONTH(pickup_datetime) AS month_,
YEAR(pickup_datetime) AS year_,
count(rate_code) as count
FROM
[nyc-tlc:green.trips_2015]
WHERE
rate_code=5
GROUP BY 1, 2
ORDER by 1 ASC
结果是:
month_ year_ count
1 2015 34228
2 2015 36366
3 2015 42221
4 2015 41159
5 2015 41934
6 2015 39506
我看到您使用的是_TABLE_SUFFIX,所以如果您正在查询分区表,您可以使用帕蒂列而不是格式化日期和使用date_sub函数。这也将使用更少的计算时间。
从一个分区查询
SELECT
[COLUMN]
FROM
[DATASET].[TABLE]
WHERE
_PARTITIONDATE BETWEEN '2016-01-01'
AND '2016-01-02'
https://stackoverflow.com/questions/50601114
复制相似问题