首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >测量pySpark中两列之间的均方误差

测量pySpark中两列之间的均方误差
EN

Stack Overflow用户
提问于 2018-07-08 13:47:42
回答 2查看 2.4K关注 0票数 0

我是pySpark的新手,在处理数据方面有一些问题。

我有一个dataFrame,它有两个列,在pySpark中没有头(2.1.0)。我想计算第一列和第二列之间的最小均方误差(RegressionMetrics.MeanSquaredError):

代码语言:javascript
运行
复制
df = sc.textFile("data.csv").map(lambda l: l.split(","))
df1 = df.map(lambda x: map(eval, x))
df2 = df1.map(lambda row: LabeledPoint(row[0], row[1]))
baseline_mse_measure = RegressionMetrics(data_mse_df)
print("Baseline MSE = %s" % baseline_mse_measure.meanSquaredError)

但是得到一个错误:

代码语言:javascript
运行
复制
Py4JJavaError: An error occurred while calling o6652.meanSquaredError.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 905.0 failed 4 times, most recent failure: Lost task 0.3 in stage 905.0 (TID 4858, mapr-10089-prod-nydc1.nydc1.outbrain.com, executor 138): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/opt/mapr/spark/spark-2.1.0/python/pyspark/worker.py", line 174, in main
    process()
  File "/opt/mapr/spark/spark-2.1.0/python/pyspark/worker.py", line 169, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/opt/mapr/spark/spark-2.1.0/python/pyspark/serializers.py", line 268, in dump_stream
    vs = list(itertools.islice(iterator, batch))
  File "<ipython-input-148-177a4d3966f7>", line 6, in <lambda>
  File "/opt/mapr/spark/spark-2.1.0/python/pyspark/mllib/regression.py", line 54, in __init__
    self.features = _convert_to_vector(features)
  File "/opt/mapr/spark/spark-2.1.0/python/pyspark/mllib/linalg/__init__.py", line 80, in _convert_to_vector
    raise TypeError("Cannot convert type %s into Vector" % type(l))
TypeError: Cannot convert type <type 'float'> into Vector

    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:88)
    at org.apache.spark.scheduler.Task.run(Task.scala:100)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:317)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1436)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1424)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1423)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1651)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1606)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1595)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1981)
    at org.apache.spark.rdd.RDD$$anonfun$aggregate$1.apply(RDD.scala:1115)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
    at org.apache.spark.rdd.RDD.aggregate(RDD.scala:1108)
    at org.apache.spark.mllib.evaluation.RegressionMetrics.summary$lzycompute(RegressionMetrics.scala:57)
    at org.apache.spark.mllib.evaluation.RegressionMetrics.summary(RegressionMetrics.scala:54)
    at org.apache.spark.mllib.evaluation.RegressionMetrics.SSerr$lzycompute(RegressionMetrics.scala:65)
    at org.apache.spark.mllib.evaluation.RegressionMetrics.SSerr(RegressionMetrics.scala:65)
    at org.apache.spark.mllib.evaluation.RegressionMetrics.meanSquaredError(RegressionMetrics.scala:100)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:280)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:214)
    at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/opt/mapr/spark/spark-2.1.0/python/pyspark/worker.py", line 174, in main
    process()
  File "/opt/mapr/spark/spark-2.1.0/python/pyspark/worker.py", line 169, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/opt/mapr/spark/spark-2.1.0/python/pyspark/serializers.py", line 268, in dump_stream
    vs = list(itertools.islice(iterator, batch))
  File "<ipython-input-148-177a4d3966f7>", line 6, in <lambda>
  File "/opt/mapr/spark/spark-2.1.0/python/pyspark/mllib/regression.py", line 54, in __init__
    self.features = _convert_to_vector(features)
  File "/opt/mapr/spark/spark-2.1.0/python/pyspark/mllib/linalg/__init__.py", line 80, in _convert_to_vector
    raise TypeError("Cannot convert type %s into Vector" % type(l))
TypeError: Cannot convert type <type 'float'> into Vector

    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:88)
    at org.apache.spark.scheduler.Task.run(Task.scala:100)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:317)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    ... 1 more

知道为什么吗?我应该做什么修正来计算这两列之间的MSE呢?

EN

回答 2

Stack Overflow用户

回答已采纳

发布于 2018-07-08 14:31:34

你不应该使用LabeledPoint。相反:

代码语言:javascript
运行
复制
df2 = df1.map(lambda row: (row[0], row[1]))
baseline_mse_measure = RegressionMetrics(data_mse_df)
票数 0
EN

Stack Overflow用户

发布于 2021-03-15 03:36:05

您可以使用RegressionMetrics实现:

代码语言:javascript
运行
复制
from pyspark.mllib.evaluation import RegressionMetrics

predictions = model.transform(test_df)

valuesAndPreds = predictions.select(['the_label_col', 'prediction_col'])
# It needs to convert to RDD as the parameter of RegressionMetrics
valuesAndPreds = valuesAndPreds.rdd.map(tuple)


metrics = RegressionMetrics(valuesAndPreds)

# Squared Error
print("MSE = %s" % metrics.meanSquaredError)
print("RMSE = %s" % metrics.rootMeanSquaredError)

# Mean absolute error
print("MAE = %s" % metrics.meanAbsoluteError)

参考资料:

https://spark.apache.org/docs/1.6.3/mllib-evaluation-metrics.html http://spark.apache.org/docs/2.2.0/api/python/pyspark.mllib.html?highlight=regressionmetrics#pyspark.mllib.evaluation.RegressionMetrics

票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/51232624

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档