首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >单次分裂

单次分裂
EN

Stack Overflow用户
提问于 2018-07-16 11:20:36
回答 1查看 319关注 0票数 2

我需要将我的图像分割或裁剪成几幅图像。下面给出了我的代码,它可以将一个图像分割成4个部分,但是我无法使用我的代码创建6或9个片段。我是个初学者,所以找不到解决办法。

我的代码如下:

代码语言:javascript
运行
复制
from scipy import misc

# Read the image
img = misc.imread("Imaagi.jpg")
height, width, _ = img.shape

# Cut the image in half
width_cutoff = width // 2
s1 = img[:, :width_cutoff, :]
s2 = img[:, width_cutoff:, :]


# Save each half
misc.imsave("1.jpg", s1)
misc.imsave("2.jpg", s2)

img = misc.imread("1.jpg")
height, width, _ = img.shape
height_cutoff = height // 2

s3 = img[:height_cutoff, :, :]
s4 = img[height_cutoff:, :, :]

misc.imsave("111.jpg", s3)
misc.imsave("222.jpg", s4)  

上面的代码首先将图像分成两部分,然后将图像分割为4 parts.But,如果我需要像6、9、15这样将图像拆分,那么如何实现呢?

这是我的照片,我需要分成六个单独的盒子:

EN

回答 1

Stack Overflow用户

回答已采纳

发布于 2018-07-16 12:44:48

首先,对于非4个数字,您需要一个函数将这个数字除以几乎相等大小的因子。对于4,你是用手做的,2x2。因此,下面的代码将按您的意愿进行拆分(工作在python 3.6.3,scipy 1.1.0上):

代码语言:javascript
运行
复制
# -*- coding: utf-8 -*-

import math, cv2
from scipy import misc
import numpy

def getFactors(num):
    """
    Split the input number into factors nearest to its square root. May not be
    the most efficient for large numbers, but will do for numbers smaller than 1000.
    """
    sqt = int(math.sqrt(num))
    if (num % sqt) == 0:
        return (sqt,int(num/sqt))

    num1 = sqt
    num2 = sqt
    while True:
        num1 += 1
        num2 -= 1
        if (num1 >= num) or (num2 <= 0):
            return (num, 1)
        if (num % num1) == 0:
            return (num1, int(num/num1))
        if (num % num2) == 0:
            return (num2, int(num/num2))
    return

def splitImage(img, numsplits):
    """
    Split the input image into number of splits provided by the second argument.
    The results are stored in a numpy array res and returned. The last index of the
    res array indexes the individual parts.
    """
    # Get the factors for splitting. So if the number of splits is 9, then (3,3)
    # or if 6 then (2,3) etc.
    factors = getFactors(numsplits)
    # Height and width of each split
    h = int(img.shape[0] / factors[0])
    w = int(img.shape[1] / factors[1])
    # Handle both color and B&W images
    if img.ndim >= 3:
        size = (h,w,img.shape[2],numsplits)
    else:
        size = (h,w,numsplits)
    # Initialize the result array
    res = numpy.ndarray( size, dtype = img.dtype )
    # Iterate through the number of factors to split the source image horizontally
    # and vertically, and store the resultant chunks
    for i in range(factors[0]):
        for j in range(factors[1]):
            if img.ndim >= 3:
                res[:,:,:,((i*factors[1])+j)] = img[(i*h):((i+1)*h), (j*w):((j+1)*w),:]
            else:
                res[:,:,((i*factors[1])+j)] = img[(i*h):((i+1)*h), (j*w):((j+1)*w)]

    return res

def cropImage(img):
    """
    Detect lines in the image to crop it so that the resultant image can be split well.
    We use here Canny edge detection followed by Hough Line Transform.
    """
    # Convert image to grayscale
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # Detect edges and lines
    edges = cv2.Canny(gray, 50, 150, apertureSize = 3)
    lines = cv2.HoughLines(edges, 1, numpy.pi/90, 200)

    min_x = img.shape[0]
    max_x = 0
    min_y = img.shape[1]
    max_y = 0
    # Find the extremal horizontal and vertical coordinates to crop
    for i in range(len(lines[:,0,0])):
        rho = lines[i,0,0]
        theta = lines[i,0,1]
        a = numpy.cos(theta)
        b = numpy.sin(theta)
        x = a*rho
        y = b*rho

        if abs(a) < 1e-06 :
            if min_y > int(y):
                min_y = int(y)
            if max_y < int(y):
                max_y = int(y)
        if abs(b) < 1e-06 :
            if min_x > int(x):
                min_x = int(x)
            if max_x < int(x):
                max_x = int(x)

    return img[min_y:max_y, min_x:max_x, :]

# Read image     
img = misc.imread('tmp.png')
# Crop the image
img = cropImage(img)
# Call the splitter function
res = splitImage(img, 6)
# Save the results to files
for i in range(res.shape[-1]):
    if img.ndim >= 3:
        misc.imsave('res_{0:03d}.png'.format(i),res[:,:,:,i])
    else:
        misc.imsave('res_{0:03d}.png'.format(i),res[:,:,i])

重要注意事项:,如果图像大小不能被因子整除,那么右/底部的一些像素将被这段代码裁剪!但处理这种情况并不难。

票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/51360609

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档