我试图使用scipy.interpolate.LinearNDInterpolator()
在8维空间中插值数据点,并得到了一个我不明白的错误:
scipy.spatial.qhull.QhullError: QH6154 Qhull precision error: Initial simplex is flat (facet 1 is coplanar with the interior point)
然后是更多的文本,我将在下面发布。使用我可以在网上找到的内容,我无法完成代码中的错误。这一切在我看来都是正确的(我只复制了相关的部分):
from scipy import interpolate as inter
from numpy import array
npPoints = array(points)
npS = array(s)
inter.LinearNDInterpolator(npPoints, npS)
其中,points
是一个Nx8嵌套的浮点数列表,而s
是一个浮点数的Nx1列表,这两个列表都是前面定义的。
从我在文档中看到的情况来看,我认为我做得很对。我的错误在哪里?我应该用不同的方法吗?
以下是全Qhull错误
Traceback (most recent call last):
File "BellDataFit", line 83, in <module>
inter.LinearNDInterpolator(npPoints, npS)
File "interpnd.pyx", line 248, in scipy.interpolate.interpnd.LinearNDInterpolator.__init__
File "qhull.pyx", line 1826, in scipy.spatial.qhull.Delaunay.__init__
File "qhull.pyx", line 354, in scipy.spatial.qhull._Qhull.__init__
scipy.spatial.qhull.QhullError: QH6154 Qhull precision error: Initial simplex is flat (facet 1 is coplanar with the interior point)
While executing: | qhull d Qbb Qx Qz Q12 Qt Qc
Options selected for Qhull 2015.2.r 2016/01/18:
run-id 704299719 delaunay Qbbound-last Qxact-merge Qz-infinity-point
Q12-no-wide-dup Qtriangulate Qcoplanar-keep _zero-centrum Qinterior-keep
Q3-no-merge-vertices-dim-high Pgood _max-width 5.6 Error-roundoff 3.5e-14
_one-merge 6.7e-13 Visible-distance 2.1e-13 U-coplanar-distance 2.1e-13
Width-outside 4.2e-13 _wide-facet 1.3e-12
precision problems (corrected unless 'Q0' or an error)
2 flipped facets
11 nearly singular or axis-parallel hyperplanes
11 zero divisors during back substitute
119436 zero divisors during gaussian elimination
The input to qhull appears to be less than 9 dimensional, or a
computation has overflowed.
Qhull could not construct a clearly convex simplex from points:
- p3(v9): -0.89 -0.89 0 0 0 -1.7 -3.1 -3.1 2.1
- p2(v8): -0.89 -0.89 0 0 0 -2.1 -3.1 -3.1 2.7
- p1(v7): -0.89 -0.89 0 0 0 -2.4 -3.1 -3.1 3.4
- p16(v6): -0.89 -0.89 0 0 0 2.8 -3.1 -3.1 4.3
- p2720(v5): 0 0 -0.89 0.89 0 -2.8 -3.1 -3.1 4.3
- p2448(v4): 0 0 -0.89 -0.89 0 -2.8 -3.1 -3.1 4.3
- p7055(v3): 0 0 0.89 -0.89 0 -2.8 -3.1 -3.1 4.3
- p272(v2): -0.89 0.89 0 0 0 -2.8 -3.1 -3.1 4.3
- p0(v1): -0.89 -0.89 0 0 0 -2.8 -3.1 -3.1 4.3
- p9503(v0): 0.89 -0.89 0 0 0 -2.8 -3.1 -3.1 4.3
The center point is coplanar with a facet, or a vertex is coplanar
with a neighboring facet. The maximum round off error for
computing distances is 3.5e-14. The center point, facets and distances
to the center point are as follows:
center point -0.4444 -0.4444 -0.08889 -0.08889 0 -2.025 -3.142 -3.142 3.806
facet p2 p1 p16 p2720 p2448 p7055 p272 p0 p9503 distance= 0
facet p3 p1 p16 p2720 p2448 p7055 p272 p0 p9503 distance= 0
facet p3 p2 p16 p2720 p2448 p7055 p272 p0 p9503 distance= 0
facet p3 p2 p1 p2720 p2448 p7055 p272 p0 p9503 distance= 0
facet p3 p2 p1 p16 p2448 p7055 p272 p0 p9503 distance= 0
facet p3 p2 p1 p16 p2720 p7055 p272 p0 p9503 distance= -0.13
facet p3 p2 p1 p16 p2720 p2448 p272 p0 p9503 distance= 0
facet p3 p2 p1 p16 p2720 p2448 p7055 p0 p9503 distance= 0
facet p3 p2 p1 p16 p2720 p2448 p7055 p272 p9503 distance= 0
facet p3 p2 p1 p16 p2720 p2448 p7055 p272 p0 distance= 0
These points either have a maximum or minimum x-coordinate, or
they maximize the determinant for k coordinates. Trial points
are first selected from points that maximize a coordinate.
Because of the high dimension, the min x-coordinate and max-coordinate
points are used if the determinant is non-zero. Option 'Qs' will
do a better, though much slower, job. Instead of 'Qs', you can change
the points by randomly rotating the input with 'QR0'.
The min and max coordinates for each dimension are:
0: -0.8889 0.8889 difference= 1.778
1: -0.8889 0.8889 difference= 1.778
2: -0.8889 0.8889 difference= 1.778
3: -0.8889 0.8889 difference= 1.778
4: 0 0 difference= 0
5: -2.793 2.793 difference= 5.585
6: -3.142 -2.225e-308 difference= 3.142
7: -3.142 -2.225e-308 difference= 3.142
8: 1.776e-15 5.585 difference= 5.585
If the input should be full dimensional, you have several options that
may determine an initial simplex:
- use 'QJ' to joggle the input and make it full dimensional
- use 'QbB' to scale the points to the unit cube
- use 'QR0' to randomly rotate the input for different maximum points
- use 'Qs' to search all points for the initial simplex
- use 'En' to specify a maximum roundoff error less than 3.5e-14.
- trace execution with 'T3' to see the determinant for each point.
If the input is lower dimensional:
- use 'QJ' to joggle the input and make it full dimensional
- use 'Qbk:0Bk:0' to delete coordinate k from the input. You should
pick the coordinate with the least range. The hull will have the
correct topology.
- determine the flat containing the points, rotate the points
into a coordinate plane, and delete the other coordinates.
- add one or more points to make the input full dimensional.
发布于 2020-03-24 23:10:02
在我看来,这个问题的出现是因为,正如错误所述,您的数据(或给定的一组数据)实际上小于9维,即使您将它传递给了一个9列数组。正如您在数据中看到的,它是在错误消息中打印出来的,第5、第7和第8列是不变的。这意味着这些列是线性相关的,而且数据集只有7个维度。当它通过的时候,它试图形成一个9维的单纯形,但不能形成一个叫做凸性的。
这个问题是我在编写一个运行X翼型的翼型数据库时出现的,它可以在不同的攻角、雷诺数、襟翼偏转等情况下得到翼型系数。X翼型是精细的和碰撞的,在空间中的很多点上不返回任何结果。这意味着我最终得到了一个数据库,其中所有的点都是相同的雷诺数。这使得数据库不依赖于雷诺兹号,尽管我说是的。我的数据的维数比我想象的要少。
我将通过确保数据中的所有点都是唯一的来解决这个问题,并且每一列实际上都为集合添加了维度。
https://stackoverflow.com/questions/51528255
复制相似问题