我需要Python迭代器来生成Y标记桶中X标记球的所有组合,其中X大于或等于Y,而且所有桶都包含一个或多个球。
对于X=4和Y=3的情况,球标记为labeled,桶标记为1-2-3,一些可能的组合如下:
第1桶: A,B
第2桶:C
第3桶:d
第1桶:a
第2桶: C,B
第3桶:d
第1桶:a
第2桶:C
第3桶: D,B
第1桶: A,C
第2桶:B
第3桶:d
..。
发布于 2018-09-08 23:28:15
AR对最初问题的评论帮助找到了答案,除了“X的所有Y-分区”之外,我需要的是“X的所有Y-分区的所有排列”。Knuth algorithm here是Python2实现的“X的所有Y分区”。我需要为此创建Python3实现(通过将所有xrange
与range
交换),然后将函数包装在一个新生成器中,该生成器在每次迭代时应用itertools.permutations
。下面的代码就是结果。
def algorithm_u(ns, m):
"""
- Python 3 implementation of
Knuth in the Art of Computer Programming, Volume 4, Fascicle 3B, Algorithm U
- copied from Python 2 implementation of the same at
https://codereview.stackexchange.com/questions/1526/finding-all-k-subset-partitions
- the algorithm returns
all set partitions with a given number of blocks, as a python generator object
e.g.
In [1]: gen = algorithm_u(['A', 'B', 'C'], 2)
In [2]: list(gen)
Out[2]: [[['A', 'B'], ['C']],
[['A'], ['B', 'C']],
[['A', 'C'], ['B']]]
"""
def visit(n, a):
ps = [[] for i in range(m)]
for j in range(n):
ps[a[j + 1]].append(ns[j])
return ps
def f(mu, nu, sigma, n, a):
if mu == 2:
yield visit(n, a)
else:
for v in f(mu - 1, nu - 1, (mu + sigma) % 2, n, a):
yield v
if nu == mu + 1:
a[mu] = mu - 1
yield visit(n, a)
while a[nu] > 0:
a[nu] = a[nu] - 1
yield visit(n, a)
elif nu > mu + 1:
if (mu + sigma) % 2 == 1:
a[nu - 1] = mu - 1
else:
a[mu] = mu - 1
if (a[nu] + sigma) % 2 == 1:
for v in b(mu, nu - 1, 0, n, a):
yield v
else:
for v in f(mu, nu - 1, 0, n, a):
yield v
while a[nu] > 0:
a[nu] = a[nu] - 1
if (a[nu] + sigma) % 2 == 1:
for v in b(mu, nu - 1, 0, n, a):
yield v
else:
for v in f(mu, nu - 1, 0, n, a):
yield v
def b(mu, nu, sigma, n, a):
if nu == mu + 1:
while a[nu] < mu - 1:
yield visit(n, a)
a[nu] = a[nu] + 1
yield visit(n, a)
a[mu] = 0
elif nu > mu + 1:
if (a[nu] + sigma) % 2 == 1:
for v in f(mu, nu - 1, 0, n, a):
yield v
else:
for v in b(mu, nu - 1, 0, n, a):
yield v
while a[nu] < mu - 1:
a[nu] = a[nu] + 1
if (a[nu] + sigma) % 2 == 1:
for v in f(mu, nu - 1, 0, n, a):
yield v
else:
for v in b(mu, nu - 1, 0, n, a):
yield v
if (mu + sigma) % 2 == 1:
a[nu - 1] = 0
else:
a[mu] = 0
if mu == 2:
yield visit(n, a)
else:
for v in b(mu - 1, nu - 1, (mu + sigma) % 2, n, a):
yield v
n = len(ns)
a = [0] * (n + 1)
for j in range(1, m + 1):
a[n - m + j] = j - 1
return f(m, n, 0, n, a)
class algorithm_u_permutations:
"""
generator for all permutations of all set partitions with a given number of blocks
e.g.
In [4]: gen = algorithm_u_permutations(['A', 'B', 'C'], 2)
In [5]: list(gen)
Out[5]:
[(['A', 'B'], ['C']),
(['C'], ['A', 'B']),
(['A'], ['B', 'C']),
(['B', 'C'], ['A']),
(['A', 'C'], ['B']),
(['B'], ['A', 'C'])]
"""
from itertools import permutations
def __init__(self, ns, m):
self.au = algorithm_u(ns, m)
self.perms = self.permutations(next(self.au))
def __next__(self):
try:
return next(self.perms)
except StopIteration:
self.perms = self.permutations(next(self.au))
return next(self.perms)
def __iter__(self):
return self
https://stackoverflow.com/questions/52230899
复制相似问题