首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >每周频率-透析数据集

每周频率-透析数据集
EN

Stack Overflow用户
提问于 2018-09-27 18:22:33
回答 1查看 33关注 0票数 0

我有一个1995-2014年的透析数据。它有变量"id“、"name”、"date“和”情态“。

我对“房屋署”的模式很感兴趣。

数据框架遵循这样的结构:--从1995年4月开始(然后逐月列出到2014年12月)-个人可在多个月内找到(即Name1可能在1995年4月至1997年3月期间接受透析;因此列出了多次的原因)--每一行有一个日期是一次会议(我需要计算出每名病人每周就诊的频率)。

希望以上所述对我所做的努力是有意义的。

以下是数据集的一个示例:

代码语言:javascript
运行
复制
id          name       date         modality    
10101650    name1      03-Apr-95    HD
10101650    name1      05-Apr-95    HD
10101650    name1      07-Apr-95    HD
10101650    name1      10-Apr-95    HD
10101650    name1      12-Apr-95    HD
10101650    name1      14-Apr-95    HD
10101650    name1      17-Apr-95    HD
10101650    name1      19-Apr-95    HD
10101650    name1      21-Apr-95    HD
10101650    name1      22-Apr-95    HD
10101650    name1      24-Apr-95    HD
10101650    name1      26-Apr-95    HD
10101650    name1      28-Apr-95    HD
10206042    name2      03-Apr-95    HD
10206042    name2      05-Apr-95    HD
10206042    name2      07-Apr-95    HD
10206042    name2      10-Apr-95    HD
10206042    name2      12-Apr-95    HD
10206042    name2      14-Apr-95    HD
10206042    name2      17-Apr-95    HD
10206042    name2      19-Apr-95    HD
10206042    name2      21-Apr-95    HD
10206042    name2      24-Apr-95    HD
10206042    name2      26-Apr-95    HD
10206042    name2      28-Apr-95    HD
10101650    name1      01-May-95    HD
10101650    name1      03-May-95    HD
10101650    name1      05-May-95    HD
10101650    name1      08-May-95    HD
10101650    name1      10-May-95    HD
10101650    name1      12-May-95    HD
10101650    name1      15-May-95    HD
10101650    name1      17-May-95    HD
10101650    name1      19-May-95    HD
10101650    name1      22-May-95    HD
10101650    name1      24-May-95    HD
10101650    name1      26-May-95    HD
10101650    name1      29-May-95    HD
10101650    name1      31-May-95    HD
10205987    name3      01-May-95    HD
10205987    name3      03-May-95    HD
10205987    name3      05-May-95    HD
10205987    name3      08-May-95    HD
10205987    name3      10-May-95    HD
10205987    name3      12-May-95    HD
10205987    name3      15-May-95    HD
10205987    name3      17-May-95    HD
10205987    name3      19-May-95    HD
10205987    name3      22-May-95    HD
10205987    name3      24-May-95    HD
10205987    name3      26-May-95    HD
10205987    name3      29-May-95    HD
10205987    name3      31-May-95    HD
10206042    name2      01-May-95    HD
10206042    name2      03-May-95    HD
10206042    name2      05-May-95    HD
10206042    name2      08-May-95    HD
10206042    name2      10-May-95    HD
10206042    name2      12-May-95    HD
10206042    name2      15-May-95    HD
10206042    name2      17-May-95    HD
10206042    name2      19-May-95    HD
10206042    name2      22-May-95    HD
10206042    name2      24-May-95    HD
10206042    name2      26-May-95    HD

如前所述,每名病人每周需要治疗次数。这将是一个平均,因为病人可以进行透析几年。

EN

回答 1

Stack Overflow用户

回答已采纳

发布于 2018-09-27 18:55:13

下面是如何使用dplyrlubridate包来完成这个任务-

代码语言:javascript
运行
复制
library(dplyr)
library(lubridate)

df$week_year <- paste(week(df$date), year(df$date), sep = "-")
filter(df, modality == "HD") %>%
group_by(id, name, week_year) %>%
  summarise(sessions = n()) %>%
  group_by(id, name) %>%
  summarize(avg_sessions_per_week = mean(sessions))

# A tibble: 3 x 3
# Groups:   id [?]
#         id name  avg_sessions_per_week
#      <int> <chr>                 <dbl>
# 1 10101650 name1                  3.00
# 2 10205987 name3                  2.80
# 3 10206042 name2                  3.00

数据-

代码语言:javascript
运行
复制
df <- structure(list(id = c(10101650L, 10101650L, 10101650L, 10101650L, 
10101650L, 10101650L, 10101650L, 10101650L, 10101650L, 10101650L, 
10101650L, 10101650L, 10101650L, 10206042L, 10206042L, 10206042L, 
10206042L, 10206042L, 10206042L, 10206042L, 10206042L, 10206042L, 
10206042L, 10206042L, 10206042L, 10101650L, 10101650L, 10101650L, 
10101650L, 10101650L, 10101650L, 10101650L, 10101650L, 10101650L, 
10101650L, 10101650L, 10101650L, 10101650L, 10101650L, 10205987L, 
10205987L, 10205987L, 10205987L, 10205987L, 10205987L, 10205987L, 
10205987L, 10205987L, 10205987L, 10205987L, 10205987L, 10205987L, 
10205987L, 10206042L, 10206042L, 10206042L, 10206042L, 10206042L, 
10206042L, 10206042L, 10206042L, 10206042L, 10206042L, 10206042L, 
10206042L), name = c("name1", "name1", "name1", "name1", "name1", 
"name1", "name1", "name1", "name1", "name1", "name1", "name1", 
"name1", "name2", "name2", "name2", "name2", "name2", "name2", 
"name2", "name2", "name2", "name2", "name2", "name2", "name1", 
"name1", "name1", "name1", "name1", "name1", "name1", "name1", 
"name1", "name1", "name1", "name1", "name1", "name1", "name3", 
"name3", "name3", "name3", "name3", "name3", "name3", "name3", 
"name3", "name3", "name3", "name3", "name3", "name3", "name2", 
"name2", "name2", "name2", "name2", "name2", "name2", "name2", 
"name2", "name2", "name2", "name2"), date = structure(c(9223, 
9225, 9227, 9230, 9232, 9234, 9237, 9239, 9241, 9242, 9244, 9246, 
9248, 9223, 9225, 9227, 9230, 9232, 9234, 9237, 9239, 9241, 9244, 
9246, 9248, 9251, 9253, 9255, 9258, 9260, 9262, 9265, 9267, 9269, 
9272, 9274, 9276, 9279, 9281, 9251, 9253, 9255, 9258, 9260, 9262, 
9265, 9267, 9269, 9272, 9274, 9276, 9279, 9281, 9251, 9253, 9255, 
9258, 9260, 9262, 9265, 9267, 9269, 9272, 9274, 9276), class = "Date"), 
    modality = c("HD", "HD", "HD", "HD", "HD", "HD", "HD", "HD", 
    "HD", "HD", "HD", "HD", "HD", "HD", "HD", "HD", "HD", "HD", 
    "HD", "HD", "HD", "HD", "HD", "HD", "HD", "HD", "HD", "HD", 
    "HD", "HD", "HD", "HD", "HD", "HD", "HD", "HD", "HD", "HD", 
    "HD", "HD", "HD", "HD", "HD", "HD", "HD", "HD", "HD", "HD", 
    "HD", "HD", "HD", "HD", "HD", "HD", "HD", "HD", "HD", "HD", 
    "HD", "HD", "HD", "HD", "HD", "HD", "HD")), .Names = c("id", 
"name", "date", "modality"), row.names = c(NA, -65L), class = "data.frame")
票数 0
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/52543033

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档