首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >如何在R中迭代所有列的组合并逐组应用函数?

如何在R中迭代所有列的组合并逐组应用函数?
EN

Stack Overflow用户
提问于 2018-11-01 00:36:59
回答 2查看 408关注 0票数 0

我有以下data.table名为dt

代码语言:javascript
复制
  set.seed(1)
  dt <- data.table(expand.grid(c("a","b"),1:2,1:2,c("M","N","O","P","Q")))
  dt$perf <- rnorm(nrow(dt),0,.01)
  colnames(dt) <- c("ticker","par1","par2","row_names","perf")

我的目标是通过par1par2row_names迭代所有组合,并选择一个最大化cumprod(mean(perf)+1)-1的组合。让我们看一下数据,这样在视觉上就更有意义了。

代码语言:javascript
复制
dt[order(row_names,ticker,par1,par2)]
    ticker par1 par2 row_names         perf
 1:      a    1    1         M  0.011462284
 2:      a    1    2         M -0.004252677
 3:      a    2    1         M  0.005727396
 4:      a    2    2         M -0.003892372
 5:      b    1    1         M -0.024030962
 6:      b    1    2         M  0.009510128
 7:      b    2    1         M  0.003747244
 8:      b    2    2         M -0.002843307

对于每个tickerrow_names,我们都有par1par22 x 2 = 4组合,即(1,1) (1,2) (2,1) (2,2)

我想计算mean of perfticker = a, par1 = 1, par2 = 1相关联,以及与ticker = b所有其他组合相关联的perf。使用上面图像中的数字,

代码语言:javascript
复制
res
       a_perf       b_perf
1: 0.01146228 -0.024030962
2: 0.01146228  0.009510128
3: 0.01146228  0.003747244
4: 0.01146228 -0.002843307

apply(res,1,mean)
[1] -0.006284339  0.010486206  0.007604764  0.004309488

然后,我们对ticker = a, par1 = 1, par2 = 2ticker = b的所有其他组合重复这个过程。

对于par1par2与每个row_names的所有组合,我们都会重复这个过程。

编辑:使用@earch的建议,我们得到以下信息:

代码语言:javascript
复制
tmp <- lapply(split(dt, dt$row_names), calcCombMeans)
$M
   a.row b.row          mean
1      1     2 -0.0022140524
2      3     2 -0.0032599264
3      5     2  0.0025657555
4      7     2  0.0033553619
5      1     4  0.0048441350
6      3     4  0.0037982609
7      5     4  0.0096239429
8      7     4  0.0104135493
9      1     6 -0.0072346110
10     3     6 -0.0082804850
11     5     6 -0.0024548031
12     7     6 -0.0016651967
13     1     8  0.0005593545
14     3     8 -0.0004865195
15     5     8  0.0053391624
16     7     8  0.0061287688

从这里开始,我想选择max(mean) for row_names M,N,O,P,Q。这样做的一种方法是,如果我以后不关心引用索引的话:

代码语言:javascript
复制
res <- sapply(1:length(tmp),function(i) which.max(tmp[[i]]$perf))
[1]  8  6  3 12 16

这将是我计算完成后所期望的最终结果的方法:

代码语言:javascript
复制
res <- rbindlist(tmp,id="row_names")
  res <- res[,list(best=max(perf),best_idx = which.max(perf)),by=row_names]
   row_names        best best_idx
1:         M 0.010413549        8
2:         N 0.009508122        6
3:         O 0.009314068        3
4:         P 0.008883106       12
5:         Q 0.009316006       16

我还没有决定是否需要best_idx信息(为了复制特定row_names的精确计算,我可能会这样做),但是使用这个res,我可以通过以下操作计算出我的cumRet

代码语言:javascript
复制
res[,cumRet:= cumprod(best+1)-1]
> res
   row_names        best best_idx      cumRet
1:         M 0.010413549        8 0.01041355
2:         N 0.009508122        6 0.02002068
3:         O 0.009314068        3 0.02952123
4:         P 0.008883106       12 0.03866657
5:         Q 0.009316006       16 0.04834280

@earch确实有助于查看计算所有这些组合的过程。我想知道通过使用data.table的功能是否有一个更有效的解决方案。我的真实数据集比这个(数百万行)要大得多,而且组合将开始付出代价。

编辑2:在能够逐步完成这个过程之后,我想出了一个非常快速的解决方案!

代码语言:javascript
复制
tmp <- dt[,list(par1=par1[which.max(perf)],par2=par2[which.max(perf)],perf=max(perf)),by=list(ticker,row_names)]
    res <- tmp[,list(perf=mean(perf),par1= paste(par1,collapse=","),par2=paste(par2,collapse=",")),by=row_names]

通过使用data.table,我可以通过分组和滴答组合来计算最大perf。然后在做完之后,我可以按row_names分组。结果是一样的!

代码语言:javascript
复制
> res
   row_names        perf par1 par2
1:         M 0.010413549  2,2  2,1
2:         N 0.009508122  2,2  1,1
3:         O 0.009314068  1,1  2,1
4:         P 0.008883106  2,1  2,2
5:         Q 0.009316006  2,2  2,2
EN

回答 2

Stack Overflow用户

回答已采纳

发布于 2018-11-06 20:17:28

编辑2:在能够逐步完成这个过程之后,我想出了一个非常快速的解决方案!

代码语言:javascript
复制
tmp <- dt[,list(par1=par1[which.max(perf)],par2=par2[which.max(perf)],
                                           perf=max(perf)),
                                           by=list(ticker,row_names)]
res <- tmp[,list(perf=mean(perf),par1= paste(par1,collapse=","),
                                          par2=paste(par2,collapse=",")),by=row_names]

通过使用data.table,我可以通过分组和滴答组合来计算最大perf。然后在做完之后,我可以按row_names分组。结果是一样的!

代码语言:javascript
复制
> res
   row_names        perf par1 par2
1:         M 0.010413549  2,2  2,1
2:         N 0.009508122  2,2  1,1
3:         O 0.009314068  1,1  2,1
4:         P 0.008883106  2,1  2,2
5:         Q 0.009316006  2,2  2,2
票数 0
EN

Stack Overflow用户

发布于 2018-11-01 05:28:37

我不知道累积积的值是多少,但是这里有一个函数,它计算row_names中a和b的所有perf组合之间的平均值。它应该给你完成任务所需的东西:

代码语言:javascript
复制
calcCombMeans <- function(dt) {
  a.rows <- which(dt$ticker == "a")
  b.rows <- which(dt$ticker == "b")
  rep.rows <- expand.grid(a.row = a.rows, b.row = b.rows)
  rep.rows$mean <- sapply(1:nrow(rep.rows), function(i) {
    mean(dt$perf[unlist(rep.rows[i, ])])
  })
  dt$means <- lapply(1:nrow(dt), function(i) {
    if(dt$ticker[i] == "a") {
      filter(rep.rows, a.row == i)$mean
    } else {
      filter(rep.rows, b.row == i)$mean
    }
  })
  dt
}

do.call(rbind, lapply(split(dt, dt$row_names), calcCombMeans))

    ticker par1 par2 row_names          perf
 1:      a    1    1         M -0.0062645381
 2:      b    1    1         M  0.0018364332
 3:      a    2    1         M -0.0083562861
 4:      b    2    1         M  0.0159528080
 5:      a    1    2         M  0.0032950777
 6:      b    1    2         M -0.0082046838
 7:      a    2    2         M  0.0048742905
 8:      b    2    2         M  0.0073832471
 9:      a    1    1         N  0.0057578135
10:      b    1    1         N -0.0030538839
11:      a    2    1         N  0.0151178117
12:      b    2    1         N  0.0038984324
13:      a    1    2         N -0.0062124058
14:      b    1    2         N -0.0221469989
15:      a    2    2         N  0.0112493092
16:      b    2    2         N -0.0004493361
17:      a    1    1         O -0.0001619026
18:      b    1    1         O  0.0094383621
19:      a    2    1         O  0.0082122120
20:      b    2    1         O  0.0059390132
21:      a    1    2         O  0.0091897737
22:      b    1    2         O  0.0078213630
23:      a    2    2         O  0.0007456498
24:      b    2    2         O -0.0198935170
25:      a    1    1         P  0.0061982575
26:      b    1    1         P -0.0005612874
27:      a    2    1         P -0.0015579551
28:      b    2    1         P -0.0147075238
29:      a    1    2         P -0.0047815006
30:      b    1    2         P  0.0041794156
31:      a    2    2         P  0.0135867955
32:      b    2    2         P -0.0010278773
33:      a    1    1         Q  0.0038767161
34:      b    1    1         Q -0.0005380504
35:      a    2    1         Q -0.0137705956
36:      b    2    1         Q -0.0041499456
37:      a    1    2         Q -0.0039428995
38:      b    1    2         Q -0.0005931340
39:      a    2    2         Q  0.0110002537
40:      b    2    2         Q  0.0076317575
    ticker par1 par2 row_names          perf
                                                      means
 1: -0.0022140524, 0.0048441350,-0.0072346110, 0.0005593545
 2:     -0.002214052,-0.003259926, 0.002565755, 0.003355362
 3: -0.0032599264, 0.0037982609,-0.0082804850,-0.0004865195
 4:         0.004844135,0.003798261,0.009623943,0.010413549
 5:      0.002565755, 0.009623943,-0.002454803, 0.005339162
 6:     -0.007234611,-0.008280485,-0.002454803,-0.001665197
 7:      0.003355362, 0.010413549,-0.001665197, 0.006128769
 8:  0.0005593545,-0.0004865195, 0.0053391624, 0.0061287688
 9:      0.001351965, 0.004828123,-0.008194593, 0.002654239
10:      0.001351965, 0.006031964,-0.004633145, 0.004097713
11:      0.006031964, 0.009508122,-0.003514594, 0.007334238
12:      0.004828123, 0.009508122,-0.001156987, 0.007573871
13:     -0.004633145,-0.001156987,-0.014179702,-0.003330871
14:     -0.008194593,-0.003514594,-0.014179702,-0.005448845
15:      0.004097713, 0.007573871,-0.005448845, 0.005399987
16:      0.002654239, 0.007334238,-0.003330871, 0.005399987
17:      0.004638230, 0.002888555, 0.003829730,-0.010027710
18:         0.004638230,0.008825287,0.009314068,0.005092006
19:      0.008825287, 0.007075613, 0.008016787,-0.005840653
20:         0.002888555,0.007075613,0.007564393,0.003342332
21:      0.009314068, 0.007564393, 0.008505568,-0.005351872
22:         0.003829730,0.008016787,0.008505568,0.004283506
23:      0.005092006, 0.003342332, 0.004283506,-0.009573934
24:     -0.010027710,-0.005840653,-0.005351872,-0.009573934
25:      0.002818485,-0.004254633, 0.005188837, 0.002585190
26:      0.002818485,-0.001059621,-0.002671394, 0.006512754
27:     -0.001059621,-0.008132739, 0.001310730,-0.001292916
28: -0.0042546332,-0.0081327395,-0.0097445122,-0.0005603642
29: -0.0026713940,-0.0097445122,-0.0003010425,-0.0029046889
30:  0.0051888365, 0.0013107303,-0.0003010425, 0.0088831056
31:  0.0065127541,-0.0005603642, 0.0088831056, 0.0062794591
32:      0.002585190,-0.001292916,-0.002904689, 0.006279459
33:  0.0016693329,-0.0001366148, 0.0016417911, 0.0057542368
34:      0.001669333,-0.007154323,-0.002240475, 0.005231102
35:     -0.007154323,-0.008960271,-0.007181865,-0.003069419
36: -0.0001366148,-0.0089602706,-0.0040464226, 0.0034251540
37:     -0.002240475,-0.004046423,-0.002268017, 0.001844429
38:      0.001641791,-0.007181865,-0.002268017, 0.005203560
39:         0.005231102,0.003425154,0.005203560,0.009316006
40:      0.005754237,-0.003069419, 0.001844429, 0.009316006
                                                      means
票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/53093731

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档