首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >GridSearchCV没有属性grid.grid_scores_

GridSearchCV没有属性grid.grid_scores_
EN

Stack Overflow用户
提问于 2019-04-05 16:26:07
回答 1查看 14.4K关注 0票数 9

尝试过的grid.cv_results_没有纠正问题

代码语言:javascript
复制
from sklearn.model_selection
import GridSearchCV
params = {
    'decisiontreeclassifier__max_depth': [1, 2],
    'pipeline-1__clf__C': [0.001, 0.1, 100.0]
}
grid = GridSearchCV(estimator = mv_clf,
    param_grid = params,
    cv = 10,
    scoring = 'roc_auc')
grid.fit(X_train, y_train)
for params, mean_score, scores in grid.grid_scores_:
    print("%0.3f+/-%0.2f %r" %
        (mean_score, scores.std() / 2, params))
#AttributeError: 'GridSearchCV' object has no attribute 'grid_scores_'

尝试用grid.grid_scores_代替grid.cv_results_,目的是打印不同的超参数值组合和通过10倍交叉验证计算的平均ROC分数。

代码语言:javascript
复制
from sklearn.model_selection
    import GridSearchCV
    params = {
        'decisiontreeclassifier__max_depth': [1, 2],
        'pipeline-1__clf__C': [0.001, 0.1, 100.0]
    }
    grid = GridSearchCV(estimator = mv_clf,
        param_grid = params,
        cv = 10,
        scoring = 'roc_auc')
    grid.fit(X_train, y_train)
    for params, mean_score, scores in grid.grid_scores_:
        print("%0.3f+/-%0.2f %r" %
            (mean_score, scores.std() / 2, params))
    #AttributeError: 'GridSearchCV' object has no attribute 'grid_scores_'
EN

回答 1

Stack Overflow用户

发布于 2019-11-15 13:03:01

在最新的scitkit learn libaray中,grid_scores_已经贬值,取而代之的是cv_results_

cv_results_给出了网格搜索运行的详细结果。

代码语言:javascript
复制
grid.cv_results_.keys()

Output: dict_keys(['mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time', 'param_n_estimators', 'params', 'split0_test_score', 
'split1_test_score', 'split2_test_score', 'split3_test_score', 'split4_test_score',
'mean_test_score', 'std_test_score', 'rank_test_score'])

cv_results_给出了比grid_score更详细的输出。结果输出以字典的形式出现。通过遍历字典的关键字,可以从字典中提取相关的度量。下面是运行网格-搜索cv=5的示例

代码语言:javascript
复制
 for i in ['mean_test_score', 'std_test_score', 'param_n_estimators']:
        print(i," : ",grid.cv_results_[i])

 Output:   mean_test_score  :  [0.833 0.83 0.83 0.837 0.838 0.8381 0.83]
           std_test_score  :  [0.011 0.009 0.010 0.0106 0.010 0.0102 0.0099]
           param_n_estimators  :  [20 30 40 50 60 70 80]
票数 11
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/55539770

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档