我正在使用传输学习为斯坦福汽车数据集构建一个分类模型。我想要实现标号平滑来惩罚过度自信的预测和改进泛化。
TensorFlow在CrossEntropyLoss中有一个简单的关键字参数。有人为PyTorch构建了类似的功能,我可以用它进行即插即用吗?
发布于 2021-03-24 00:51:01
使用软目标,即硬目标的加权平均和标签上的均匀分布,可以显著提高多类神经网络的泛化和学习速度。通过这种方式平滑标签可以防止网络变得过于自信,标签平滑已经应用于许多最先进的模型中,包括图像分类、语言翻译和语音识别。
标签平滑已经在交叉熵损失函数的Tensorflow中实现.BinaryCrossentropy,CategoricalCrossentropy.但是目前还没有标签平滑在PyTorch中的正式实现。然而,目前正在积极讨论这一问题,希望能向它提供一个正式的一揽子方案。下面是讨论主题:第7455期。
在这里,我们将介绍一些标签平滑(LS)的可用最佳实现。基本上,有许多实现LS的方法。请参阅这方面的具体讨论,其中之一是这里和另一个在这里。在这里,我们将以2的独特方式实现,每个版本都有两个版本;因此,总4。
备选案文1: CrossEntropyLossWithProbs
通过这种方式,它接受one-hot目标向量。用户必须手动平滑目标向量。它可以在with torch.no_grad()范围内完成,因为它暂时将所有requires_grad标志设置为false。
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn.modules.loss import _WeightedLoss
class LabelSmoothingLoss(nn.Module):
def __init__(self, classes, smoothing=0.0, dim=-1, weight = None):
"""if smoothing == 0, it's one-hot method
if 0 < smoothing < 1, it's smooth method
"""
super(LabelSmoothingLoss, self).__init__()
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
self.weight = weight
self.cls = classes
self.dim = dim
def forward(self, pred, target):
assert 0 <= self.smoothing < 1
pred = pred.log_softmax(dim=self.dim)
if self.weight is not None:
pred = pred * self.weight.unsqueeze(0)
with torch.no_grad():
true_dist = torch.zeros_like(pred)
true_dist.fill_(self.smoothing / (self.cls - 1))
true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence)
return torch.mean(torch.sum(-true_dist * pred, dim=self.dim))此外,我们还在self. smoothing上添加了一个断言检查点,并在此实现上添加了损失加权支持。
已经把答案发到这里了。这里我们指出,这个实现类似于杨德文的上面的实现,但是,这里我们提到了他的代码,同时最小化了一些code syntax。
class SmoothCrossEntropyLoss(_WeightedLoss):
def __init__(self, weight=None, reduction='mean', smoothing=0.0):
super().__init__(weight=weight, reduction=reduction)
self.smoothing = smoothing
self.weight = weight
self.reduction = reduction
def k_one_hot(self, targets:torch.Tensor, n_classes:int, smoothing=0.0):
with torch.no_grad():
targets = torch.empty(size=(targets.size(0), n_classes),
device=targets.device) \
.fill_(smoothing /(n_classes-1)) \
.scatter_(1, targets.data.unsqueeze(1), 1.-smoothing)
return targets
def reduce_loss(self, loss):
return loss.mean() if self.reduction == 'mean' else loss.sum() \
if self.reduction == 'sum' else loss
def forward(self, inputs, targets):
assert 0 <= self.smoothing < 1
targets = self.k_one_hot(targets, inputs.size(-1), self.smoothing)
log_preds = F.log_softmax(inputs, -1)
if self.weight is not None:
log_preds = log_preds * self.weight.unsqueeze(0)
return self.reduce_loss(-(targets * log_preds).sum(dim=-1))检查
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn.modules.loss import _WeightedLoss
if __name__=="__main__":
# 1. Devin Yang
crit = LabelSmoothingLoss(classes=5, smoothing=0.5)
predict = torch.FloatTensor([[0, 0.2, 0.7, 0.1, 0],
[0, 0.9, 0.2, 0.2, 1],
[1, 0.2, 0.7, 0.9, 1]])
v = crit(Variable(predict),
Variable(torch.LongTensor([2, 1, 0])))
print(v)
# 2. Shital Shah
crit = SmoothCrossEntropyLoss(smoothing=0.5)
predict = torch.FloatTensor([[0, 0.2, 0.7, 0.1, 0],
[0, 0.9, 0.2, 0.2, 1],
[1, 0.2, 0.7, 0.9, 1]])
v = crit(Variable(predict),
Variable(torch.LongTensor([2, 1, 0])))
print(v)
tensor(1.4178)
tensor(1.4178)备选案文2: LabelSmoothingCrossEntropyLoss
这样,它接受目标向量,并且使用不手动平滑目标向量,而是内建模块负责标签平滑。它允许我们根据F.nll_loss实现标签平滑。
此外,我们还稍微最小化了编码编写,使其更加简洁。
class LabelSmoothingLoss(torch.nn.Module):
def __init__(self, smoothing: float = 0.1,
reduction="mean", weight=None):
super(LabelSmoothingLoss, self).__init__()
self.smoothing = smoothing
self.reduction = reduction
self.weight = weight
def reduce_loss(self, loss):
return loss.mean() if self.reduction == 'mean' else loss.sum() \
if self.reduction == 'sum' else loss
def linear_combination(self, x, y):
return self.smoothing * x + (1 - self.smoothing) * y
def forward(self, preds, target):
assert 0 <= self.smoothing < 1
if self.weight is not None:
self.weight = self.weight.to(preds.device)
n = preds.size(-1)
log_preds = F.log_softmax(preds, dim=-1)
loss = self.reduce_loss(-log_preds.sum(dim=-1))
nll = F.nll_loss(
log_preds, target, reduction=self.reduction, weight=self.weight
)
return self.linear_combination(loss / n, nll)class LabelSmoothing(nn.Module):
"""NLL loss with label smoothing.
"""
def __init__(self, smoothing=0.0):
"""Constructor for the LabelSmoothing module.
:param smoothing: label smoothing factor
"""
super(LabelSmoothing, self).__init__()
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
def forward(self, x, target):
logprobs = torch.nn.functional.log_softmax(x, dim=-1)
nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1))
nll_loss = nll_loss.squeeze(1)
smooth_loss = -logprobs.mean(dim=-1)
loss = self.confidence * nll_loss + self.smoothing * smooth_loss
return loss.mean()检查
if __name__=="__main__":
# Wangleiofficial
crit = LabelSmoothingLoss(smoothing=0.3, reduction="mean")
predict = torch.FloatTensor([[0, 0.2, 0.7, 0.1, 0],
[0, 0.9, 0.2, 0.2, 1],
[1, 0.2, 0.7, 0.9, 1]])
v = crit(Variable(predict),
Variable(torch.LongTensor([2, 1, 0])))
print(v)
# NVIDIA
crit = LabelSmoothing(smoothing=0.3)
predict = torch.FloatTensor([[0, 0.2, 0.7, 0.1, 0],
[0, 0.9, 0.2, 0.2, 1],
[1, 0.2, 0.7, 0.9, 1]])
v = crit(Variable(predict),
Variable(torch.LongTensor([2, 1, 0])))
print(v)
tensor(1.3883)
tensor(1.3883)更新:正式加入
torch.nn.CrossEntropyLoss(weight=None, size_average=None,
ignore_index=- 100, reduce=None,
reduction='mean', label_smoothing=0.0)发布于 2019-12-10 10:17:29
我一直在寻找从_Loss派生的选项,就像PyTorch中的其他损失类一样,并且尊重基本参数,比如reduction。不幸的是,我找不到直接的替代品,所以最终写了我自己的。不过,我还没有对此进行充分的测试:
import torch
from torch.nn.modules.loss import _WeightedLoss
import torch.nn.functional as F
class SmoothCrossEntropyLoss(_WeightedLoss):
def __init__(self, weight=None, reduction='mean', smoothing=0.0):
super().__init__(weight=weight, reduction=reduction)
self.smoothing = smoothing
self.weight = weight
self.reduction = reduction
@staticmethod
def _smooth_one_hot(targets:torch.Tensor, n_classes:int, smoothing=0.0):
assert 0 <= smoothing < 1
with torch.no_grad():
targets = torch.empty(size=(targets.size(0), n_classes),
device=targets.device) \
.fill_(smoothing /(n_classes-1)) \
.scatter_(1, targets.data.unsqueeze(1), 1.-smoothing)
return targets
def forward(self, inputs, targets):
targets = SmoothCrossEntropyLoss._smooth_one_hot(targets, inputs.size(-1),
self.smoothing)
lsm = F.log_softmax(inputs, -1)
if self.weight is not None:
lsm = lsm * self.weight.unsqueeze(0)
loss = -(targets * lsm).sum(-1)
if self.reduction == 'sum':
loss = loss.sum()
elif self.reduction == 'mean':
loss = loss.mean()
return loss其他备选方案:
发布于 2019-04-15 09:00:49
据我所知没有。
下面是两个PyTorch实现的示例:
attention-is-all-you-need-pytorch,重新实现Google的注意就是你所需要的纸https://stackoverflow.com/questions/55681502
复制相似问题