首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >熊猫爆炸失败,KeyError: 0

熊猫爆炸失败,KeyError: 0
EN

Stack Overflow用户
提问于 2019-08-14 07:23:51
回答 1查看 1.7K关注 0票数 7

pandas.DataFrame.explode是如何工作的?

在文件中:

https://pandas.pydata.org/pandas-docs/version/0.25/reference/api/pandas.DataFrame.explode.html df = pd.DataFrame({'A':[1,2,3,'foo',[],3,4],'B':1})显示打印(df.columns)打印(df.dtypes) df.explode('A')

效果很好。但对于我的数据,它失败了,但有一个关键的例外。我的数据最初如下所示:

具有下列类型:

代码语言:javascript
运行
复制
print(foo.columns)
print(foo.dtypes)
Index(['model', 'id_min_days_cutoff'], dtype='object')
model                 object
id_min_days_cutoff     int64
dtype: object

其中,model是使用状态模型回归获得的,使用:

代码语言:javascript
运行
复制
model.summary2().tables[1]

调用时:df.explode(“模型”)

它失败了,因为:

代码语言:javascript
运行
复制
KeyError: 0

试图复制这个:

代码语言:javascript
运行
复制
df_json = df.to_json()

# now load it again for SF purposes
df_json = '{"model":{"0":{"Coef.":{"ALQ_15PLUS_perc":95489.7866599741,"AST_perc":-272.9213162565,"BEV_UNTER15_perc":6781.448845533,"BEV_UEBER65_perc":-46908.2889142205},"Std.Err.":{"ALQ_15PLUS_perc":1399665.9788843254,"AST_perc":1558.1286516172,"BEV_UNTER15_perc":2027111.8764156068,"BEV_UEBER65_perc":1230965.9812726702},"z":{"ALQ_15PLUS_perc":0.0682232676,"AST_perc":-0.1751596802,"BEV_UNTER15_perc":0.0033453747,"BEV_UEBER65_perc":-0.038106893},"P>|z|":{"ALQ_15PLUS_perc":0.9456079052,"AST_perc":0.8609541651,"BEV_UNTER15_perc":0.9973307821,"BEV_UEBER65_perc":0.9696024555},"[0.025":{"ALQ_15PLUS_perc":-2647805.1223393031,"AST_perc":-3326.7973567063,"BEV_UNTER15_perc":-3966284.8215624653,"BEV_UEBER65_perc":-2459557.2784026605},"0.975]":{"ALQ_15PLUS_perc":2838784.6956592514,"AST_perc":2780.9547241933,"BEV_UNTER15_perc":3979847.7192535317,"BEV_UEBER65_perc":2365740.7005742197}},"1":{"Coef.":{"ALQ_15PLUS_perc":-140539.5196612777,"AST_perc":142.579413527,"BEV_UNTER15_perc":-45288.5612893498,"BEV_UEBER65_perc":-152106.9841374909},"Std.Err.":{"ALQ_15PLUS_perc":299852250.9155113101,"AST_perc":24013.7007484301,"BEV_UNTER15_perc":417010365.7919532657,"BEV_UEBER65_perc":171876588.9403209388},"z":{"ALQ_15PLUS_perc":-0.0004686959,"AST_perc":0.0059374194,"BEV_UNTER15_perc":-0.000108603,"BEV_UEBER65_perc":-0.0008849779},"P>|z|":{"ALQ_15PLUS_perc":0.9996260348,"AST_perc":0.9952626525,"BEV_UNTER15_perc":0.9999133474,"BEV_UEBER65_perc":0.9992938899},"[0.025":{"ALQ_15PLUS_perc":-587840151.997330904,"AST_perc":-46923.4091889186,"BEV_UNTER15_perc":-817370586.6933914423,"BEV_UEBER65_perc":-337024031.0927618742},"0.975]":{"ALQ_15PLUS_perc":587559072.9580082893,"AST_perc":47208.5680159725,"BEV_UNTER15_perc":817280009.5708128214,"BEV_UEBER65_perc":336719817.1244869232}}},"id_min_days_cutoff":{"0":2,"1":3}}'
pd.read_json(df_json).explode('model')

在以下方面失败:

代码语言:javascript
运行
复制
KeyError: 0

编辑

尝试使用以下方法之一寻找替代方案:How to unnest (explode) a column in a pandas DataFrame?选择2.1

代码语言:javascript
运行
复制
pd.DataFrame({'model':np.concatenate(df_json.model.values)},
               index=df_json.index.repeat(ddf_jsonf.model.str.len()))

但这一做法失败了,原因是:

代码语言:javascript
运行
复制
ValueError: zero-dimensional arrays cannot be concatenated

当将其应用于原始df时,不要从JSON读取:

代码语言:javascript
运行
复制
Exception: Data must be 1-dimensional

我怎样才能让这个不起眼的人开始工作呢?

EN

回答 1

Stack Overflow用户

发布于 2021-12-16 19:04:01

如果您有json /字典形式的状态模型回归的结果,您可以尝试“手动”引爆数据。下面我尝试使用列表理解。您试图实现的结果是否如下所示:

代码语言:javascript
运行
复制
df_json = '{"model":{"0":{"Coef.":{"ALQ_15PLUS_perc":95489.7866599741,"AST_perc":-272.9213162565,"BEV_UNTER15_perc":6781.448845533,"BEV_UEBER65_perc":-46908.2889142205},"Std.Err.":{"ALQ_15PLUS_perc":1399665.9788843254,"AST_perc":1558.1286516172,"BEV_UNTER15_perc":2027111.8764156068,"BEV_UEBER65_perc":1230965.9812726702},"z":{"ALQ_15PLUS_perc":0.0682232676,"AST_perc":-0.1751596802,"BEV_UNTER15_perc":0.0033453747,"BEV_UEBER65_perc":-0.038106893},"P>|z|":{"ALQ_15PLUS_perc":0.9456079052,"AST_perc":0.8609541651,"BEV_UNTER15_perc":0.9973307821,"BEV_UEBER65_perc":0.9696024555},"[0.025":{"ALQ_15PLUS_perc":-2647805.1223393031,"AST_perc":-3326.7973567063,"BEV_UNTER15_perc":-3966284.8215624653,"BEV_UEBER65_perc":-2459557.2784026605},"0.975]":{"ALQ_15PLUS_perc":2838784.6956592514,"AST_perc":2780.9547241933,"BEV_UNTER15_perc":3979847.7192535317,"BEV_UEBER65_perc":2365740.7005742197}},"1":{"Coef.":{"ALQ_15PLUS_perc":-140539.5196612777,"AST_perc":142.579413527,"BEV_UNTER15_perc":-45288.5612893498,"BEV_UEBER65_perc":-152106.9841374909},"Std.Err.":{"ALQ_15PLUS_perc":299852250.9155113101,"AST_perc":24013.7007484301,"BEV_UNTER15_perc":417010365.7919532657,"BEV_UEBER65_perc":171876588.9403209388},"z":{"ALQ_15PLUS_perc":-0.0004686959,"AST_perc":0.0059374194,"BEV_UNTER15_perc":-0.000108603,"BEV_UEBER65_perc":-0.0008849779},"P>|z|":{"ALQ_15PLUS_perc":0.9996260348,"AST_perc":0.9952626525,"BEV_UNTER15_perc":0.9999133474,"BEV_UEBER65_perc":0.9992938899},"[0.025":{"ALQ_15PLUS_perc":-587840151.997330904,"AST_perc":-46923.4091889186,"BEV_UNTER15_perc":-817370586.6933914423,"BEV_UEBER65_perc":-337024031.0927618742},"0.975]":{"ALQ_15PLUS_perc":587559072.9580082893,"AST_perc":47208.5680159725,"BEV_UNTER15_perc":817280009.5708128214,"BEV_UEBER65_perc":336719817.1244869232}}},"id_min_days_cutoff":{"0":2,"1":3}}'

df = pd.read_json(df_json)

# "Explode" the model column (containing a dict of dicts) using list comprehension:
model_col = [k+':'+kk+':'+str(vv) for i in range(0,len(df.model)) for k,v in df.model.iloc[i].items() for kk,vv in v.items()]

# Generate the second column (assuming each row of the original df "explodes" into the same number of rows):
cutoff_col = np.repeat([df['id_min_days_cutoff'].iloc[i] for i in range(0,len(df.model))], len(model_col)/2)

# Get everything into one dataframe
    exploded_df = pd.DataFrame({'model':model_col, 'id_min_days_cutoff': cutoff_col})
    
    exploded_df
                                               model  id_min_days_cutoff
    0         Coef.:ALQ_15PLUS_perc:95489.7866599741                   2
    1                 Coef.:AST_perc:-272.9213162565                   2
    2          Coef.:BEV_UNTER15_perc:6781.448845533                   2
    3       Coef.:BEV_UEBER65_perc:-46908.2889142205                   2
    4    Std.Err.:ALQ_15PLUS_perc:1399665.9788843254                   2
    5              Std.Err.:AST_perc:1558.1286516172                   2
    6   Std.Err.:BEV_UNTER15_perc:2027111.8764156068                   2
    7   Std.Err.:BEV_UEBER65_perc:1230965.9812726702                   2
    8                 z:ALQ_15PLUS_perc:0.0682232676                   2
    9                       z:AST_perc:-0.1751596802                   2
    10               z:BEV_UNTER15_perc:0.0033453747                   2
    11               z:BEV_UEBER65_perc:-0.038106893                   2
    12            P>|z|:ALQ_15PLUS_perc:0.9456079052                   2
    13                   P>|z|:AST_perc:0.8609541651                   2
    14           P>|z|:BEV_UNTER15_perc:0.9973307821                   2
    15           P>|z|:BEV_UEBER65_perc:0.9696024555                   2
    16     [0.025:ALQ_15PLUS_perc:-2647805.122339303                   2
    17              [0.025:AST_perc:-3326.7973567063                   2
    18   [0.025:BEV_UNTER15_perc:-3966284.8215624653                   2
    19   [0.025:BEV_UEBER65_perc:-2459557.2784026605                   2
    20     0.975]:ALQ_15PLUS_perc:2838784.6956592514                   2
    21               0.975]:AST_perc:2780.9547241933                   2
    22    0.975]:BEV_UNTER15_perc:3979847.7192535317                   2
    23    0.975]:BEV_UEBER65_perc:2365740.7005742197                   2
    24      Coef.:ALQ_15PLUS_perc:-140539.5196612777                   3
    25                  Coef.:AST_perc:142.579413527                   3
    26      Coef.:BEV_UNTER15_perc:-45288.5612893498                   3
    27     Coef.:BEV_UEBER65_perc:-152106.9841374909                   3
    28    Std.Err.:ALQ_15PLUS_perc:299852250.9155113                   3
    29            Std.Err.:AST_perc:24013.7007484301                   3
    30  Std.Err.:BEV_UNTER15_perc:417010365.79195327                   3
    31  Std.Err.:BEV_UEBER65_perc:171876588.94032094                   3
    32               z:ALQ_15PLUS_perc:-0.0004686959                   3
    33                       z:AST_perc:0.0059374194                   3
    34               z:BEV_UNTER15_perc:-0.000108603                   3
    35              z:BEV_UEBER65_perc:-0.0008849779                   3
    36            P>|z|:ALQ_15PLUS_perc:0.9996260348                   3
    37                   P>|z|:AST_perc:0.9952626525                   3
    38           P>|z|:BEV_UNTER15_perc:0.9999133474                   3
    39           P>|z|:BEV_UEBER65_perc:0.9992938899                   3
    40     [0.025:ALQ_15PLUS_perc:-587840151.9973309                   3
    41             [0.025:AST_perc:-46923.4091889186                   3
    42    [0.025:BEV_UNTER15_perc:-817370586.6933914                   3
    43    [0.025:BEV_UEBER65_perc:-337024031.0927619                   3
    44      0.975]:ALQ_15PLUS_perc:587559072.9580083                   3
    45              0.975]:AST_perc:47208.5680159725                   3
    46     0.975]:BEV_UNTER15_perc:817280009.5708128                   3
    47     0.975]:BEV_UEBER65_perc:336719817.1244869                   3
票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/57489940

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档