pandas.DataFrame.explode
是如何工作的?
在文件中:
https://pandas.pydata.org/pandas-docs/version/0.25/reference/api/pandas.DataFrame.explode.html df = pd.DataFrame({'A':[1,2,3,'foo',[],3,4],'B':1})显示打印(df.columns)打印(df.dtypes) df.explode('A')
效果很好。但对于我的数据,它失败了,但有一个关键的例外。我的数据最初如下所示:
具有下列类型:
print(foo.columns)
print(foo.dtypes)
Index(['model', 'id_min_days_cutoff'], dtype='object')
model object
id_min_days_cutoff int64
dtype: object
其中,model
是使用状态模型回归获得的,使用:
model.summary2().tables[1]
调用时:df.explode(“模型”)
它失败了,因为:
KeyError: 0
试图复制这个:
df_json = df.to_json()
# now load it again for SF purposes
df_json = '{"model":{"0":{"Coef.":{"ALQ_15PLUS_perc":95489.7866599741,"AST_perc":-272.9213162565,"BEV_UNTER15_perc":6781.448845533,"BEV_UEBER65_perc":-46908.2889142205},"Std.Err.":{"ALQ_15PLUS_perc":1399665.9788843254,"AST_perc":1558.1286516172,"BEV_UNTER15_perc":2027111.8764156068,"BEV_UEBER65_perc":1230965.9812726702},"z":{"ALQ_15PLUS_perc":0.0682232676,"AST_perc":-0.1751596802,"BEV_UNTER15_perc":0.0033453747,"BEV_UEBER65_perc":-0.038106893},"P>|z|":{"ALQ_15PLUS_perc":0.9456079052,"AST_perc":0.8609541651,"BEV_UNTER15_perc":0.9973307821,"BEV_UEBER65_perc":0.9696024555},"[0.025":{"ALQ_15PLUS_perc":-2647805.1223393031,"AST_perc":-3326.7973567063,"BEV_UNTER15_perc":-3966284.8215624653,"BEV_UEBER65_perc":-2459557.2784026605},"0.975]":{"ALQ_15PLUS_perc":2838784.6956592514,"AST_perc":2780.9547241933,"BEV_UNTER15_perc":3979847.7192535317,"BEV_UEBER65_perc":2365740.7005742197}},"1":{"Coef.":{"ALQ_15PLUS_perc":-140539.5196612777,"AST_perc":142.579413527,"BEV_UNTER15_perc":-45288.5612893498,"BEV_UEBER65_perc":-152106.9841374909},"Std.Err.":{"ALQ_15PLUS_perc":299852250.9155113101,"AST_perc":24013.7007484301,"BEV_UNTER15_perc":417010365.7919532657,"BEV_UEBER65_perc":171876588.9403209388},"z":{"ALQ_15PLUS_perc":-0.0004686959,"AST_perc":0.0059374194,"BEV_UNTER15_perc":-0.000108603,"BEV_UEBER65_perc":-0.0008849779},"P>|z|":{"ALQ_15PLUS_perc":0.9996260348,"AST_perc":0.9952626525,"BEV_UNTER15_perc":0.9999133474,"BEV_UEBER65_perc":0.9992938899},"[0.025":{"ALQ_15PLUS_perc":-587840151.997330904,"AST_perc":-46923.4091889186,"BEV_UNTER15_perc":-817370586.6933914423,"BEV_UEBER65_perc":-337024031.0927618742},"0.975]":{"ALQ_15PLUS_perc":587559072.9580082893,"AST_perc":47208.5680159725,"BEV_UNTER15_perc":817280009.5708128214,"BEV_UEBER65_perc":336719817.1244869232}}},"id_min_days_cutoff":{"0":2,"1":3}}'
pd.read_json(df_json).explode('model')
在以下方面失败:
KeyError: 0
编辑
尝试使用以下方法之一寻找替代方案:How to unnest (explode) a column in a pandas DataFrame?选择2.1
pd.DataFrame({'model':np.concatenate(df_json.model.values)},
index=df_json.index.repeat(ddf_jsonf.model.str.len()))
但这一做法失败了,原因是:
ValueError: zero-dimensional arrays cannot be concatenated
当将其应用于原始df时,不要从JSON读取:
Exception: Data must be 1-dimensional
我怎样才能让这个不起眼的人开始工作呢?
发布于 2021-12-16 19:04:01
如果您有json /字典形式的状态模型回归的结果,您可以尝试“手动”引爆数据。下面我尝试使用列表理解。您试图实现的结果是否如下所示:
df_json = '{"model":{"0":{"Coef.":{"ALQ_15PLUS_perc":95489.7866599741,"AST_perc":-272.9213162565,"BEV_UNTER15_perc":6781.448845533,"BEV_UEBER65_perc":-46908.2889142205},"Std.Err.":{"ALQ_15PLUS_perc":1399665.9788843254,"AST_perc":1558.1286516172,"BEV_UNTER15_perc":2027111.8764156068,"BEV_UEBER65_perc":1230965.9812726702},"z":{"ALQ_15PLUS_perc":0.0682232676,"AST_perc":-0.1751596802,"BEV_UNTER15_perc":0.0033453747,"BEV_UEBER65_perc":-0.038106893},"P>|z|":{"ALQ_15PLUS_perc":0.9456079052,"AST_perc":0.8609541651,"BEV_UNTER15_perc":0.9973307821,"BEV_UEBER65_perc":0.9696024555},"[0.025":{"ALQ_15PLUS_perc":-2647805.1223393031,"AST_perc":-3326.7973567063,"BEV_UNTER15_perc":-3966284.8215624653,"BEV_UEBER65_perc":-2459557.2784026605},"0.975]":{"ALQ_15PLUS_perc":2838784.6956592514,"AST_perc":2780.9547241933,"BEV_UNTER15_perc":3979847.7192535317,"BEV_UEBER65_perc":2365740.7005742197}},"1":{"Coef.":{"ALQ_15PLUS_perc":-140539.5196612777,"AST_perc":142.579413527,"BEV_UNTER15_perc":-45288.5612893498,"BEV_UEBER65_perc":-152106.9841374909},"Std.Err.":{"ALQ_15PLUS_perc":299852250.9155113101,"AST_perc":24013.7007484301,"BEV_UNTER15_perc":417010365.7919532657,"BEV_UEBER65_perc":171876588.9403209388},"z":{"ALQ_15PLUS_perc":-0.0004686959,"AST_perc":0.0059374194,"BEV_UNTER15_perc":-0.000108603,"BEV_UEBER65_perc":-0.0008849779},"P>|z|":{"ALQ_15PLUS_perc":0.9996260348,"AST_perc":0.9952626525,"BEV_UNTER15_perc":0.9999133474,"BEV_UEBER65_perc":0.9992938899},"[0.025":{"ALQ_15PLUS_perc":-587840151.997330904,"AST_perc":-46923.4091889186,"BEV_UNTER15_perc":-817370586.6933914423,"BEV_UEBER65_perc":-337024031.0927618742},"0.975]":{"ALQ_15PLUS_perc":587559072.9580082893,"AST_perc":47208.5680159725,"BEV_UNTER15_perc":817280009.5708128214,"BEV_UEBER65_perc":336719817.1244869232}}},"id_min_days_cutoff":{"0":2,"1":3}}'
df = pd.read_json(df_json)
# "Explode" the model column (containing a dict of dicts) using list comprehension:
model_col = [k+':'+kk+':'+str(vv) for i in range(0,len(df.model)) for k,v in df.model.iloc[i].items() for kk,vv in v.items()]
# Generate the second column (assuming each row of the original df "explodes" into the same number of rows):
cutoff_col = np.repeat([df['id_min_days_cutoff'].iloc[i] for i in range(0,len(df.model))], len(model_col)/2)
# Get everything into one dataframe
exploded_df = pd.DataFrame({'model':model_col, 'id_min_days_cutoff': cutoff_col})
exploded_df
model id_min_days_cutoff
0 Coef.:ALQ_15PLUS_perc:95489.7866599741 2
1 Coef.:AST_perc:-272.9213162565 2
2 Coef.:BEV_UNTER15_perc:6781.448845533 2
3 Coef.:BEV_UEBER65_perc:-46908.2889142205 2
4 Std.Err.:ALQ_15PLUS_perc:1399665.9788843254 2
5 Std.Err.:AST_perc:1558.1286516172 2
6 Std.Err.:BEV_UNTER15_perc:2027111.8764156068 2
7 Std.Err.:BEV_UEBER65_perc:1230965.9812726702 2
8 z:ALQ_15PLUS_perc:0.0682232676 2
9 z:AST_perc:-0.1751596802 2
10 z:BEV_UNTER15_perc:0.0033453747 2
11 z:BEV_UEBER65_perc:-0.038106893 2
12 P>|z|:ALQ_15PLUS_perc:0.9456079052 2
13 P>|z|:AST_perc:0.8609541651 2
14 P>|z|:BEV_UNTER15_perc:0.9973307821 2
15 P>|z|:BEV_UEBER65_perc:0.9696024555 2
16 [0.025:ALQ_15PLUS_perc:-2647805.122339303 2
17 [0.025:AST_perc:-3326.7973567063 2
18 [0.025:BEV_UNTER15_perc:-3966284.8215624653 2
19 [0.025:BEV_UEBER65_perc:-2459557.2784026605 2
20 0.975]:ALQ_15PLUS_perc:2838784.6956592514 2
21 0.975]:AST_perc:2780.9547241933 2
22 0.975]:BEV_UNTER15_perc:3979847.7192535317 2
23 0.975]:BEV_UEBER65_perc:2365740.7005742197 2
24 Coef.:ALQ_15PLUS_perc:-140539.5196612777 3
25 Coef.:AST_perc:142.579413527 3
26 Coef.:BEV_UNTER15_perc:-45288.5612893498 3
27 Coef.:BEV_UEBER65_perc:-152106.9841374909 3
28 Std.Err.:ALQ_15PLUS_perc:299852250.9155113 3
29 Std.Err.:AST_perc:24013.7007484301 3
30 Std.Err.:BEV_UNTER15_perc:417010365.79195327 3
31 Std.Err.:BEV_UEBER65_perc:171876588.94032094 3
32 z:ALQ_15PLUS_perc:-0.0004686959 3
33 z:AST_perc:0.0059374194 3
34 z:BEV_UNTER15_perc:-0.000108603 3
35 z:BEV_UEBER65_perc:-0.0008849779 3
36 P>|z|:ALQ_15PLUS_perc:0.9996260348 3
37 P>|z|:AST_perc:0.9952626525 3
38 P>|z|:BEV_UNTER15_perc:0.9999133474 3
39 P>|z|:BEV_UEBER65_perc:0.9992938899 3
40 [0.025:ALQ_15PLUS_perc:-587840151.9973309 3
41 [0.025:AST_perc:-46923.4091889186 3
42 [0.025:BEV_UNTER15_perc:-817370586.6933914 3
43 [0.025:BEV_UEBER65_perc:-337024031.0927619 3
44 0.975]:ALQ_15PLUS_perc:587559072.9580083 3
45 0.975]:AST_perc:47208.5680159725 3
46 0.975]:BEV_UNTER15_perc:817280009.5708128 3
47 0.975]:BEV_UEBER65_perc:336719817.1244869 3
https://stackoverflow.com/questions/57489940
复制相似问题