首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >WebGL全方位阴影映射问题

WebGL全方位阴影映射问题
EN

Computer Graphics用户
提问于 2015-12-08 18:48:35
回答 1查看 995关注 0票数 10

首先,我想说,我读过很多关于使用深度地图和立方体地图进行阴影映射的文章,我了解它们是如何工作的,我也有使用OpenGL的工作经验,但是,我有一个问题,在我的三维图形引擎"EZ3“中使用一个单点光源实现全方位阴影映射技术。我的引擎使用WebGL作为三维图形API,JavaScript作为编程语言,这是为我的学士论文计算机科学。

基本上,这就是我实现阴影映射算法的方式,但我只关注点灯的情况,因为有了它们,我可以归档全方位的阴影映射。

首先,我积极地面对这样的选择:

代码语言:javascript
运行
复制
if (this.state.faceCulling !== Material.FRONT) {
    if (this.state.faceCulling === Material.NONE)
      gl.enable(gl.CULL_FACE);

    gl.cullFace(gl.FRONT);
    this.state.faceCulling = Material.FRONT;
  }

其次,我创建了一个深度程序来记录每个cubemap面的深度值,这是我在GLSL1.0中的深度程序代码:

顶点着色器:

代码语言:javascript
运行
复制
precision highp float;

attribute vec3 position;

uniform mat4 uModelView;
uniform mat4 uProjection;

void main() {
  gl_Position = uProjection * uModelView * vec4(position, 1.0);
}

碎片着色器:

代码语言:javascript
运行
复制
precision highp float;

vec4 packDepth(const in float depth) {
  const vec4 bitShift = vec4(256.0 * 256.0 * 256.0, 256.0 * 256.0, 256.0, 1.0);
  const vec4 bitMask = vec4(0.0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0);
  vec4 res = mod(depth * bitShift * vec4(255), vec4(256)) / vec4(255);
  res -= res.xxyz * bitMask;
  return res;
}

void main() {
  gl_FragData[0] = packDepth(gl_FragCoord.z);
}

第三,这是我的JavaScript函数“归档”全方位阴影映射的主体。

代码语言:javascript
运行
复制
program.bind(gl);

  for (i = 0; i < lights.length; i++) {
    light = lights[i];

    // Updates pointlight's projection matrix

    light.updateProjection();

    // Binds point light's depth framebuffer

    light.depthFramebuffer.bind(gl);

    // Updates point light's framebuffer in order to create it 
    // or if it's resolution changes, it'll be created again.

    light.depthFramebuffer.update(gl);

    // Sets viewport dimensions with depth framebuffer's dimensions

    this.viewport(new Vector2(), light.depthFramebuffer.size);

    if (light instanceof PointLight) {

      up = new Vector3();
      view = new Matrix4();
      origin = new Vector3();
      target = new Vector3();

      for (j = 0; j < 6; j++) {

    // Check in which cubemap's face we are ...

        switch (j) {
          case Cubemap.POSITIVE_X:
            target.set(1, 0, 0);
            up.set(0, -1, 0);
            break;
          case Cubemap.NEGATIVE_X:
            target.set(-1, 0, 0);
            up.set(0, -1, 0);
            break;
          case Cubemap.POSITIVE_Y:
            target.set(0, 1, 0);
            up.set(0, 0, 1);
            break;
          case Cubemap.NEGATIVE_Y:
            target.set(0, -1, 0);
            up.set(0, 0, -1);
            break;
          case Cubemap.POSITIVE_Z:
            target.set(0, 0, 1);
            up.set(0, -1, 0);
            break;
          case Cubemap.NEGATIVE_Z:
            target.set(0, 0, -1);
            up.set(0, -1, 0);
            break;
        }

    // Creates a view matrix using target and up vectors according to each face of pointlight's
    // cubemap. Furthermore, I translate it in minus light position in order to place
    // the point light in the world's origin and render each cubemap's face at this 
    // point of view

        view.lookAt(origin, target, up);
        view.mul(new EZ3.Matrix4().translate(light.position.clone().negate()));

    // Flips the Y-coordinate of each cubemap face
    // scaling the projection matrix by (1, -1, 1).

    // This is a perspective projection matrix which has:
    // 90 degress of FOV.
    // 1.0 of aspect ratio.
    // Near clipping plane at 0.01.
    // Far clipping plane at 2000.0.

        projection = light.projection.clone();
        projection.scale(new EZ3.Vector3(1, -1, 1));

    // Attaches a cubemap face to current framebuffer in order to record depth values for the face with this line
    // gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_CUBE_MAP_POSITIVE_X + j, id, 0);

        light.depthFramebuffer.texture.attach(gl, j);

    // Clears current framebuffer's color with these lines:
    // gl.clearColor(1.0,1.0,1.0,1.0);
    // gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

        this.clear(color);

    // Renders shadow caster meshes using the depth program

        for (k = 0; k < shadowCasters.length; k++)
          this._renderShadowCaster(shadowCasters[k], program, view, projection);
      }
    } else {
       // Directional light & Spotlight case ...
    }
  }

第四,使用我的主顶点着色器中的深度cubemap &片段着色器来计算全方位阴影映射:

顶点着色器:

代码语言:javascript
运行
复制
precision highp float;

attribute vec3 position;

uniform mat4 uModel;
uniform mat4 uModelView;
uniform mat4 uProjection;

varying vec3 vPosition;

void main() {
  vPosition = vec3(uModel * vec4(position, 1.0));

  gl_Position = uProjection * uModelView * vec4(position, 1.0);
}

碎片着色器:

代码语言:javascript
运行
复制
float unpackDepth(in vec4 color) {
    return dot(color, vec4(1.0 / (256.0 * 256.0 * 256.0), 1.0 / (256.0 * 256.0), 1.0 / 256.0, 1.0 ));
}

float pointShadow(const in PointLight light, const in samplerCube shadowSampler) {
    vec3 direction = vPosition - light.position;
    float vertexDepth = clamp(length(direction), 0.0, 1.0);
    float shadowMapDepth = unpackDepth(textureCube(shadowSampler, direction));

    return (vertexDepth > shadowMapDepth) ? light.shadowDarkness : 1.0;
}

最后,这是我得到的结果,我的场景有一个平面,一个立方体和一个球体。此外,红亮球是点光源:

正如你所看到的,我看起来就像点光深度帧缓冲区的cubemap -在他们的脸上做的不是很好的插值。

直到现在,我还不知道怎么解决这个问题。

EN

回答 1

Computer Graphics用户

回答已采纳

发布于 2015-12-15 00:12:41

溶液

几天后,我意识到我在用一个以度为单位的视场角度计算投影矩阵,它应该是弧度。我做了转换,现在一切都很好。在我的深度帧缓冲区的立方体地图的脸之间的插值现在是完美的。因此,在弧度中处理每一个三角函数的角度是很重要的。

此外,我意识到,正如我在问题中所说的那样,您可以计算视图矩阵,并以这种方式计算:

代码语言:javascript
运行
复制
view.lookAt(position, target.add(position.clone()), up);

这种方法意味着你的观点被放置在点灯的中心,你只是呈现在你的立方体地图的每个方向,但是这些方向是哪一个呢?这些方向是计算出来的,把我在开关块中的每个目标(根据每个立方体地图的脸)与你的点灯位置相加。

此外,没有必要翻转投影矩阵的Y坐标,在这种情况下,可以将点对点的透视投影矩阵调到你的GLSL着色器,而不用缩放它(1,-1,1),因为我正在处理没有翻转Y坐标的纹理,我认为只有在处理翻转纹理的Y坐标时,才应该翻转点光投影矩阵的Y坐标,这样才能产生正确的全方位阴影映射效果。

最后,我将在这里留下我在CPU/GPU侧的全方位阴影映射算法的最终版本。在CPU方面,我将解释您必须做的每一步,以便为每个cubemap的脸计算一个正确的阴影映射。另一方面,在GPU方面,我将在我的主要片段着色器中解释我的深度程序的顶点/片段着色器和全方位阴影映射功能,这是为了帮助可能正在学习这项技术的人,或者解决今后对这个算法的怀疑:

CPU

代码语言:javascript
运行
复制
  // Disable blending and enable front face culling.

  this.state.disable(gl.BLEND);

  this.state.enable(gl.CULL_FACE);
  this.state.cullFace(gl.FRONT);

  // Binds depth program

  program.bind(gl);

  // For each pointlight source do

  for (i = 0; i < lights.length; i++) {
    light = lights[i];

    // Get each pointlight's world position

    position = light.worldPosition();

    // Binds pointlight's depth framebuffer. Besides, in this function,
    // viewport's dimensions are set according to depth framebuffer's dimension.

    light.depthFramebuffer.bind(gl, this.state);

    // Updates point light's framebuffer in order to create it 
    // or if it's resolution have changed, it'll be created again.

    light.depthFramebuffer.update(gl);

    // Check in which cubemap's face we are ...

    for (j = 0; j < 6; j++) {
      switch (j) {
        case Cubemap.POSITIVE_X:
          target.set(1, 0, 0);
          up.set(0, -1, 0);
          break;
        case Cubemap.NEGATIVE_X:
          target.set(-1, 0, 0);
          up.set(0, -1, 0);
          break;
        case Cubemap.POSITIVE_Y:
          target.set(0, 1, 0);
          up.set(0, 0, 1);
          break;
        case Cubemap.NEGATIVE_Y:
          target.set(0, -1, 0);
          up.set(0, 0, -1);
          break;
        case Cubemap.POSITIVE_Z:
          target.set(0, 0, 1);
          up.set(0, -1, 0);
          break;
        case Cubemap.NEGATIVE_Z:
          target.set(0, 0, -1);
          up.set(0, -1, 0);
          break;
      }

      // Creates a view matrix using target and up vectors 
      // according to each face of pointlight's cubemap.

      view.lookAt(position, target.add(position.clone()), up);

      // Attaches cubemap's face to current framebuffer 
      // in order to record depth values in that direction.

      light.depthFramebuffer.texture.attach(gl, j);

      // Clears color & depth buffers of your current framebuffer

      this.clear();

      // Render each shadow caster mesh using your depth program

      for (k = 0; k < meshes.length; k++)
        this._renderMeshDepth(program, meshes[k], view, light.projection);
    }
  }

关于renderMeshDepth函数,我已经:

代码语言:javascript
运行
复制
  // Computes pointlight's model-view matrix 

  modelView.mul(view, mesh.world);

  // Dispatch each matrix to the GLSL depth program

  program.loadUniformMatrix(gl, 'uModelView', modelView);
  program.loadUniformMatrix(gl, 'uProjection', projection);

  // Renders a mesh using vertex buffer objects (VBO)

  mesh.render(gl, program.attributes, this.state, this.extensions);

GPU

深度程序顶点着色器:

代码语言:javascript
运行
复制
precision highp float;

attribute vec3 position;

uniform mat4 uModelView;
uniform mat4 uProjection;

void main() {
  gl_Position = uProjection * uModelView * vec4(position, 1.0);
}

深度计划片段阴影:

代码语言:javascript
运行
复制
precision highp float;

// The pack function distributes fragment's depth precision storing 
// it throughout (R,G,B,A) color channels and not just R color channel 
// as usual in shadow mapping algorithms. This is because I'm working
// with 8-bit textures and one color channel hasn't enough precision 
// to store a depth value.

vec4 pack(const in float depth) {
  const vec4 bitShift = vec4(255.0 * 255.0 * 255.0, 255.0 * 255.0, 255.0, 1.0);
  const vec4 bitMask = vec4(0.0, 1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0);

  vec4 res = fract(depth * bitShift);
  res -= res.xxyz * bitMask;

  return res;
}

void main() {
  // Packs normalized fragment's Z-Coordinate which is in [0,1] interval.

  gl_FragColor = pack(gl_FragCoord.z);
}

在我的主要片段着色器中的全方位阴影映射功能:

代码语言:javascript
运行
复制
// Unpacks fragment's Z-Coordinate which was packed 
// on the depth program's fragment shader.

float unpack(in vec4 color) {
   const vec4 bitShift = vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0);
   return dot(color, bitShift);
}

// Computes Omnidirectional Shadow Mapping technique using a samplerCube
// vec3 lightPosition is your pointlight's position in world coordinates.
// vec3 vPosition is your vertex's position in world coordinates, in code
// I mean this -> vPosition = vec3(uModel * vec4(position, 1.0));
// where uModel is your World/Model matrix.

float omnidirectionalShadow(in vec3 lightPosition, in float bias, in float darkness, in samplerCube sampler) {
    vec3 direction = vPosition - lightPosition;
    float vertexDepth = clamp(length(direction), 0.0, 1.0);
    float shadowMapDepth = unpack(textureCube(sampler, direction)) + bias;

    return (vertexDepth > shadowMapDepth) ? darkness : 1.0;
}

这里有算法的最终呈现。

有乐趣的编码美丽的图形,祝好运:)

C.Z.

票数 7
EN
页面原文内容由Computer Graphics提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://computergraphics.stackexchange.com/questions/1788

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档