我知道离散数学是一个非常广泛的话题,在很多领域都有应用,但我只是想知道其中的一些主题,你会期望普通的计算机科学学生知道些什么?
以下是肯尼斯·H·罗森所著“离散数学及其应用第六版”一书目录中的主题范围:
1 The Foundations: Logic and Proofs
1.1 Propositional Logic
1.2 Propositional Equivalences
1.3 Predicates and Quantifiers
1.4 Nested Quantifiers
1.5 Rules of Inference
1.6 Introduction to Proofs
1.7 Proof Methods and Strategy
2 Basic Structures: Sets, Functions, Sequences and Sums
2.1 Sets
2.2 Set Operations
2.3 Functions
2.4 Sequences and Summations
3 The Fundamentals: Algorithms, the Integers, and Matrices
3.1 Algorithms
3.2 The Growth of Functions
3.3 Complexity of Algorithms
3.4 The Integers and Division
3.5 Primes and Greatest Common Divisors
3.6 Integers and Algorithms
3.7 Applications of Number Theory
3.8 Matrices
4 Induction and Recursion
4.1 Mathematical Induction
4.2 Strong Induction and Well-Ordering
4.3 Recursive Definitions and Structural Induction
4.4 Recursive Algorithms
4.5 Program Correctness
5 Counting
5.1 The Basics of Counting
5.2 The Pigeonhole Principle
5.3 Permutations and Combinations
5.4 Binomial Coefficients
5.5 Generalized Permutations and Combinations
5.6 Generating Permutations and Combinations
6 Discrete Probability
6.1 An Introduction to Discrete Probability
6.2 Probability Theory
6.3 Bayes Theorem
6.4 Expected Value and Variance
7 Advanced Counting Techniques
7.1 Recurrence Relations
7.2 Solving Linear Recurrence Relations
7.3 Divide-and-Conquer Algorithms and Recurrence Relations
7.4 Generating Functions
7.5 Inclusion-Exclusion
7.6 Applications of Inclusion-Exclusion
8 Relations
8.1 Relations and Their Properties
8.2 n-ary Relations and Their Applications
8.3 Representing Relations
8.4 Closures of Relations
8.5 Equivalence Relations
8.6 Partial Orderings
9 Graphs
9.1 Graphs and Graph Models
9.2 Graph Terminology and Special Types of Graphs
9.3 Representing Graphs and Graph Isomorphism
9.4 Connectivity
9.5 Euler and Hamilton Paths
9.6 Shortest-Path Problems
9.7 Planar Graphs
9.8 Graph Coloring
10 Trees
10.1 Introduction to Trees
10.2 Applications of Trees
10.3 Tree Traversal
10.4 Spanning Trees
10.5 Minimum Spanning Trees
11 Boolean Algebra
11.1Boolean Functions
11.2 Representing Boolean Functions
11.3 Logic Gates
11.4 Minimization of Circuits
12 Modeling Computation
12.1 Languages and Grammars
12.2 Finite-State Machines with Output
12.3 Finite-State Machines with No Output
12.4 Language Recognition
12.5 Turing Machines
Appendixes
A.1 Axioms for the Real Numbers and the Positive Integers
A.2 Exponential and Logarithmic Functions
A.3 Pseudocode
发布于 2012-08-09 10:39:13
具体数学:计算机科学的基础著,KnuthE.A.正是为了这个目的写的。
它为计算机科学,特别是算法分析提供了数学知识和技能。根据前言,具体数学的主题是“CONtinuous和disCRETE数学的混合”。
2012年年7月27日,维基百科
发布于 2012-08-09 10:49:59
埃里克·雷曼( Eric )和汤姆·莱顿( Tom )的“计算机科学数学”是另一本涉及这类东西的书,不过我认为普通的CS学生并不是什么都知道。
这是CS所需数学的概述,是为CS学生编写的.从某种意义上说,这正是你想要的。我还没有读过,我只是浏览了一下,但在斯坦福大学的一门关于算法设计和分析的在线课程中,它被专门推荐用于这个目的(在一个地方拥有CS学生所需的所有数学)。
发布于 2012-08-09 14:08:54
所有的数学都在减少,不要就此止步。你在计算方面没有足够的数学技能。离散数学对于理解计算机特定的问题是很好的,但是如果你对编程感兴趣,那么你很可能会被要求设计或操作软件,并根据需要使用大量的数学。不管怎么说,这真的,真的,对你有好处--就像粥:)
https://softwareengineering.stackexchange.com/questions/160142
复制相似问题