我在之前的stackoverflow帖子中找到了一个与我类似的问题,但答案并不完全相同:Check which community a node belongs in louvain community detection
我在R中创建了一些数据,然后制作了一个图。在制作完图之后,我对图进行了聚类。现在,假设我有一个人的列表,我想找出他们属于哪个集群。
我知道手动检查数据并找出这一点很容易,但我认为如果你有一个大数据集,这将是非常困难的。
我已经写了下面的代码。一切正常,直到最后两行,我试图找出"John","Peter“和"Tim”属于哪个集群:
#load libraries
library(igraph)
library(dplyr)
#create data
Data_I_Have <- data.frame(
"Node_A" = c("John", "John", "John", "Peter", "Peter", "Peter", "Tim", "Kevin", "Adam", "Adam", "Xavier"),
"Node_B" = c("Claude", "Peter", "Tim", "Tim", "Claude", "Henry", "Kevin", "Claude", "Tim", "Henry", "Claude")
)
#create graph
graph <- graph.data.frame( Data_I_Have, directed=F)
graph <- simplify(graph)
#perform clustering
cluster = cluster_louvain(graph)
#plot graph
plot(graph, cluster)
#make list of people
people <- c("John", "Peter", "Tim")
#find out which cluster each of these people belong in (here is the error)
location <- names("people")[!(names("people") %in% cluster)]
#transform the previous data frame into a table
location_table <- table(location)
有人能告诉我我哪里做错了吗?
谢谢
发布于 2020-11-26 08:16:45
折点的成员资格保存在$membership
中,折点的名称保存在$names
中
cluster$membership[match(people,cluster$names)]
#[1] 2 3 1
或者,如果您愿意,可以使用访问器函数igraph::membership
membership(cluster)[people]
# John Peter Tim
# 2 3 1
有关详细信息,请参阅help(communities)
。
示例数据:
cluster <- structure(list(membership = c(2, 3, 1, 1, 1, 2, 2, 3), memberships = structure(c(2,
3, 1, 1, 1, 2, 2, 3), .Dim = c(1L, 8L)), modularity = 0.115702479338843,
names = c("John", "Peter", "Tim", "Kevin", "Adam", "Xavier",
"Claude", "Henry"), vcount = 8L, algorithm = "multi level"), class = "communities")
https://stackoverflow.com/questions/65014400
复制相似问题