我有一组具有记录日期和疾病状态的专利id,我希望在疾病发生1个状态后删除行,并保留患者从未得病的最小记录日期(即,患者id的所有行中的disease=0 )。我的数据集如下所示
ID Date Disease
123 02-03-2012 0
123 03-03-2013 1
123 04-03-2014 0
321 03-03-2015 1
423 06-06-2016 1
423 07-06-2017 1
543 08-05-2018 1
543 09-06-2019 0
645 08-09-2019 0
645 10-10-2018 0
645 11-10 -2012 0
和我想要的输出
ID Date Disease
123 02-03-2012 0
123 03-03-2013 1
321 03-03-2015 1
423 06-06-2016 1
543 08-05-2018 1
645 11-10 -2012 0
发布于 2020-03-20 18:25:57
我们可以转换Dates
,group_by
ID
,并选择行,直到第一次出现1或最小值。
library(dplyr)
df %>%
mutate(Date = as.Date(Date, "%d-%m-%Y")) %>%
arrange(ID, Date) %>%
group_by(ID) %>%
filter(row_number() <= which.max(Disease == 1))
# ID Date Disease
# <int> <date> <int>
#1 123 2012-03-02 0
#2 123 2013-03-03 1
#3 321 2015-03-03 1
#4 423 2016-06-06 1
#5 543 2018-05-08 1
#6 645 2012-10-11 0
发布于 2020-03-21 02:05:01
我们也可以使用slice
library(dplyr)
library(lubridate)
df1 %>%
arrange(ID, dmy(Date)) %>%
group_by(ID) %>%
slice(seq_len(which.max(Disease)))
# A tibble: 6 x 3
# Groups: ID [5]
# ID Date Disease
# <int> <chr> <int>
#1 123 02-03-2012 0
#2 123 03-03-2013 1
#3 321 03-03-2015 1
#4 423 06-06-2016 1
#5 543 08-05-2018 1
#6 645 11-10-2012 0
https://stackoverflow.com/questions/60771817
复制相似问题