我想编写使用NumPy (或Pandas)计算Arnaud Legoux移动平均的矢量化版本的代码。你能帮我弄一下这个吗?谢谢。
非矢量化版本如下所示(见下文)。
def NPALMA(pnp_array, **kwargs) :
'''
ALMA - Arnaud Legoux Moving Average,
http://www.financial-hacker.com/trend-delusion-or-reality/
https://github.com/darwinsys/Trading_Strategies/blob/master/ML/Features.py
'''
length = kwargs['length']
# just some number (6.0 is useful)
sigma = kwargs['sigma']
# sensisitivity (close to 1) or smoothness (close to 0)
offset = kwargs['offset']
asize = length - 1
m = offset * asize
s = length / sigma
dss = 2 * s * s
alma = np.zeros(pnp_array.shape)
wtd_sum = np.zeros(pnp_array.shape)
for l in range(len(pnp_array)):
if l >= asize:
for i in range(length):
im = i - m
wtd = np.exp( -(im * im) / dss)
alma[l] += pnp_array[l - length + i] * wtd
wtd_sum[l] += wtd
alma[l] = alma[l] / wtd_sum[l]
return alma
发布于 2017-10-28 22:29:35
启动方法
我们可以沿着第一个轴创建滑动窗口,然后对和减少的wtd
值范围使用张量乘法。
它的实现看起来像这样-
# Get all wtd values in an array
wtds = np.exp(-(np.arange(length) - m)**2/dss)
# Get the sliding windows for input array along first axis
pnp_array3D = strided_axis0(pnp_array,len(wtds))
# Initialize o/p array
out = np.zeros(pnp_array.shape)
# Get sum-reductions for the windows which don't need wrapping over
out[length:] = np.tensordot(pnp_array3D,wtds,axes=((1),(0)))[:-1]
# Last element of the output needed wrapping. So, do it separately.
out[length-1] = wtds.dot(pnp_array[np.r_[-1,range(length-1)]])
# Finally perform the divisions
out /= wtds.sum()
获取滑动窗口的函数:strided_axis0
来自。
使用 1D
卷积的Boost
这些与wtds
值的乘法以及它们的求和减法基本上是沿着第一个轴的卷积。因此,我们可以在axis=0
中使用scipy.ndimage.convolve1d
。考虑到内存效率,这会快得多,因为我们不会创建巨大的滑动窗口。
它的实现方式是:
from scipy.ndimage import convolve1d as conv
avgs = conv(pnp_array, weights=wtds/wtds.sum(),axis=0, mode='wrap')
因此,作为非零行的out[length-1:]
将与avgs[:-length+1]
相同。
如果我们使用来自wtds
的非常小的内核数量,可能会有一些精度差异。因此,如果使用此convolution
方法,请记住这一点。
运行时测试
方法-
def original_app(pnp_array, length, m, dss):
alma = np.zeros(pnp_array.shape)
wtd_sum = np.zeros(pnp_array.shape)
for l in range(len(pnp_array)):
if l >= asize:
for i in range(length):
im = i - m
wtd = np.exp( -(im * im) / dss)
alma[l] += pnp_array[l - length + i] * wtd
wtd_sum[l] += wtd
alma[l] = alma[l] / wtd_sum[l]
return alma
def vectorized_app1(pnp_array, length, m, dss):
wtds = np.exp(-(np.arange(length) - m)**2/dss)
pnp_array3D = strided_axis0(pnp_array,len(wtds))
out = np.zeros(pnp_array.shape)
out[length:] = np.tensordot(pnp_array3D,wtds,axes=((1),(0)))[:-1]
out[length-1] = wtds.dot(pnp_array[np.r_[-1,range(length-1)]])
out /= wtds.sum()
return out
def vectorized_app2(pnp_array, length, m, dss):
wtds = np.exp(-(np.arange(length) - m)**2/dss)
return conv(pnp_array, weights=wtds/wtds.sum(),axis=0, mode='wrap')
计时-
In [470]: np.random.seed(0)
...: m,n = 1000,100
...: pnp_array = np.random.rand(m,n)
...:
...: length = 6
...: sigma = 0.3
...: offset = 0.5
...:
...: asize = length - 1
...: m = np.floor(offset * asize)
...: s = length / sigma
...: dss = 2 * s * s
...:
In [471]: %timeit original_app(pnp_array, length, m, dss)
...: %timeit vectorized_app1(pnp_array, length, m, dss)
...: %timeit vectorized_app2(pnp_array, length, m, dss)
...:
10 loops, best of 3: 36.1 ms per loop
1000 loops, best of 3: 1.84 ms per loop
1000 loops, best of 3: 684 µs per loop
In [472]: np.random.seed(0)
...: m,n = 10000,1000 # rest same as previous one
In [473]: %timeit original_app(pnp_array, length, m, dss)
...: %timeit vectorized_app1(pnp_array, length, m, dss)
...: %timeit vectorized_app2(pnp_array, length, m, dss)
...:
1 loop, best of 3: 503 ms per loop
1 loop, best of 3: 222 ms per loop
10 loops, best of 3: 106 ms per loop
https://stackoverflow.com/questions/46990098
复制相似问题