我在复制AutoML tutorial in H2O documentation时遇到了问题。在初始化我的h2o本地服务器(h2o.init()
)之后,我得到了以下输出,听起来是正确的:
Checking whether there is an H2O instance running at http://localhost:54321 ..... not found.
Attempting to start a local H2O server...
Java Version: java version "1.8.0_181"; Java(TM) SE Runtime Environment (build 1.8.0_181-b13); Java HotSpot(TM) 64-Bit Server VM (build 25.181-b13, mixed mode)
Starting server from /home/cdsw/.local/lib/python3.8/site-packages/h2o/backend/bin/h2o.jar
Ice root: /tmp/tmp3nh32di4
JVM stdout: /tmp/tmp3nh32di4/h2o_cdsw_started_from_python.out
JVM stderr: /tmp/tmp3nh32di4/h2o_cdsw_started_from_python.err
Server is running at http://127.0.0.1:54321
Connecting to H2O server at http://127.0.0.1:54321 ... successful.
H2O_cluster_uptime: 01 secs
H2O_cluster_timezone: Etc/UTC
H2O_data_parsing_timezone: UTC
H2O_cluster_version: 3.32.1.3
H2O_cluster_version_age: 14 days, 20 hours and 29 minutes
H2O_cluster_name: H2O_from_python_cdsw_cpcrap
H2O_cluster_total_nodes: 1
H2O_cluster_free_memory: 13.98 Gb
H2O_cluster_total_cores: 32
H2O_cluster_allowed_cores: 32
H2O_cluster_status: accepting new members, healthy
H2O_connection_url: http://127.0.0.1:54321
H2O_connection_proxy: {"http": null, "https": null}
H2O_internal_security: False
H2O_API_Extensions: Amazon S3, XGBoost, Algos, AutoML, Core V3, TargetEncoder, Core V4
Python_version: 3.8.5 final
接下来,我将按照教程指定的方式导入数据集:
# Identify predictors and response
x = train.columns
y = "response"
x.remove(y)
# For binary classification, response should be a factor
train[y] = train[y].asfactor()
test[y] = test[y].asfactor()
最后,我训练我的AutoML模型:
# Run AutoML for 20 base models (limited to 1 hour max runtime by default)
aml = H2OAutoML(max_models=20, seed=1)
aml.train(x=x, y=y, training_frame=train)
这就是当它崩溃的时候,并显示以下消息:
AutoML progress: |██Failed polling AutoML progress log: Local server has died unexpectedly. RIP.
Job request failed Local server has died unexpectedly. RIP., will retry after 3s.
Job request failed Local server has died unexpectedly. RIP., will retry after 3s.
我尝试了不同的数据集,包括一些样本,以防它是一个内存问题,但没有用。错误普遍存在。
有人知道我应该怎么做来解决这个问题吗?
非常感谢!
致以问候。
发布于 2021-06-04 08:45:15
我想我能解决这个问题。在使用htop命令进行了一些监控之后,我认为这个问题实际上是内存问题。我重新启动了h2o,将内存限制为1 1GB和2个线程(可能这并不是严格意义上的必要),并且我能够正常运行一切,就像看起来的那样。
h2o.init(max_mem_size="1G", nthreads=2)
希望这对任何遇到同样问题的人都有帮助。
https://stackoverflow.com/questions/67823594
复制相似问题