首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >键错误:没有[Int64Index…]dtype='int64]位于[列]中

键错误:没有[Int64Index…]dtype='int64]位于[列]中
EN

Stack Overflow用户
提问于 2021-05-26 16:56:55
回答 1查看 339关注 0票数 0

我正在尝试在流水线上运行k折交叉验证(Standardscaler,DecisionTreeClassifier)。

首先,我导入数据。

代码语言:javascript
运行
复制
data = pd.read_csv('train_strokes.csv')

然后对数据帧进行预处理

代码语言:javascript
运行
复制
# Preprocessing data 
data.drop('id',axis=1,inplace=True)
data['age'] =data['age'].apply(lambda x : x if round(x) else np.nan) 
data['bmi'] = data['bmi'].apply(lambda bmi : bmi if 12< bmi <45 else np.nan)
data['gender'] = data['gender'].apply(lambda gender : gender if gender =='Female' or gender =='Male' else np.nan)
data.sort_values(['gender', 'age','bmi'], inplace=True) 
data['bmi'].ffill(inplace=True)
data.dropna(axis=0,inplace=True)
data.reset_index(drop=True, inplace=True)

#categorial data to numeric value
enc = LabelEncoder()
data['gender'] = enc.fit_transform(data['gender'])
data['work_type'] = enc.fit_transform(data['work_type'])
data['Residence_type'] = enc.fit_transform(data['Residence_type'])
data['smoking_status'] = enc.fit_transform(data['smoking_status'])
data['ever_married'] = enc.fit_transform(data['ever_married'])

然后切片要素和目标

代码语言:javascript
运行
复制
target = data['stroke']
feat = data.drop('stroke',axis=1)

并使用SMOTE来平衡数据

代码语言:javascript
运行
复制
sm = SMOTE(random_state = 1) 
feat, target = sm.fit_resample(feat, target) 
feat['age'] = feat['age'].apply(lambda x : round(x))
feat['hypertension'] = feat['hypertension'].apply(lambda x : round(x))
feat['heart_disease'] = feat['heart_disease'].apply(lambda x : round(x))
feat['ever_married'] = feat['ever_married'].apply(lambda x : round(x))
#split training and test
X_train, X_test, y_train, y_test = train_test_split(feat, target, test_size=0.3, random_state= 2)

这是问题的一部分。

代码语言:javascript
运行
复制
Kfold =KFold(n_splits=10)
pipeline = make_pipeline(StandardScaler(), DecisionTreeClassifier())
n_iter = 0
for train_idx, test_idx in Kfold.split(feat):
    pipeline.fit(X_train[train_idx], y_train[train_idx])
    score = pipeline.score(X_train[test_idx],y_train[test_idx])
    print('Fold #{} accuracy{}'.format(1,score))

错误码

代码语言:javascript
运行
复制
Traceback (most recent call last):
File "/Users/merb/Documents/Dev/DataScience/TP.py", line 84, in <module>
pipeline.fit(X_train[train_idx], y_train[train_idx])
File "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site- 
packages/pandas/core/frame.py", line 3030, in __getitem__
indexer = self.loc._get_listlike_indexer(key, axis=1, raise_missing=True)[1]
File "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-  
packages/pandas/core/indexing.py", line 1266, in _get_listlike_indexer
self._validate_read_indexer(keyarr, indexer, axis, raise_missing=raise_missing)
File "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-   
packages/pandas/core/indexing.py", line 1308, in _validate_read_indexer
raise KeyError(f"None of [{key}] are in the [{axis_name}]")
KeyError: "None of [Int64Index([ 5893,  5894,  5895,  5896,  5897,  5898,  5899,  5900,    
5901,\n             5902,\n            ...\n            58912, 58913, 58914, 58915, 
58916, 58917, 58918, 58919, 58920,\n            58921],\n           dtype='int64', 
length=53029)] are in the [columns]"
EN

回答 1

Stack Overflow用户

回答已采纳

发布于 2021-05-26 17:11:16

您应该使用df.loc[indexes]根据索引选择行。如果要按整型位置选择行,则应使用df.iloc[indexes]

除此之外,你还可以阅读这篇关于索引和选择pandas数据的page

票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/67701679

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档