我正在尝试使用R语言实现Apriori,但重要的部分不是使用函数Apriori(),我应该从头开始构建它。所以我做了代码,但我的代码有一个问题,我不能解决它。我在代码中所做的是:我实现了Fk−1 × F1方法。但我的问题是,当我试图输入二进制文件时,它抛出了一个缺少值的错误!我将缺少的值替换为0,但它仍然抛出错误!我认为将原始购物篮转换为二进制形式的问题!
下面是我的代码:
    multi_col = function(data_frame) {
  multivec = data.frame(val = rep(1,nrow(data_frame)))
  for(q in 1:ncol(data_frame)){
    multivec = multivec*data_frame[q]
  }
  return(multivec)
}
item = c("onion","potato","milk","burger","beer")
t1 = c(1,1,0,1,0)
t2 = c(0,1,1,1,0)
t3 = c(1,1,1,0,0)
t4 = c(1,1,1,0,0)
t5 = c(1,1,1,1,0)
t6 =c(1,1,1,1,1)
data_mat= rbind(t1,t2,t3,t4,t5,t6)
data_mat
colnames(data_mat)=item
data_mat # this is the example data frame i used to develop the code
data_mat = as.data.frame(data_mat)
data_mat
min.sup.thresh = 2
max.item = ncol(data_mat)
max.item
for(k in 1:max.item){
  if(ncol(data_mat)>1){
    Candi = list()
    Freq =  list()
    rm_col = numeric(0)
    C_seq = combn(c(1:ncol(data_mat)),k)
    for(i in 1:ncol(C_seq)){
      Candi[[i]] = colnames(data_mat[C_seq[,i]])
      if(sum(multi_col(data_mat[C_seq[,i]]))>=min.sup.thresh){
        Freq[[i]] = colnames(data_mat[C_seq[,i]])
      }else{
        rm_col = c(rm_col,i)
      }
    }
    data_mat=data_mat[(-rm_col)]
    print(paste("number of generated candidate itemsets","in C",k,"is",length(Candi)))
    print(Candi)
    print("****************************")
    print(paste("total number of frequent itemsets","in F",k,"is",length(Freq)))
    print(Freq)
    print("###################################################################################")
  }
}你能给我一些关于如何做的建议吗?
发布于 2020-02-26 17:17:31
我尝试过使用您的代码,结果显示使用k==5时,行combn(c(1:ncol(data_mat)),k)出现错误,因为data_mat只有4列。我并没有真正理解你所有的代码,但我想这是因为你在循环中修改了data_mat。我设置了一个名为tmp_data_mat的新变量,这样就不会出现错误。
另一种选择是在for-loop之外修改data_mat
还要注意,milk中缺少一个值,它是通过在您使用的sum函数中添加na.rm = TRUE来工作的。
# I create data_mat on another way
data_mat <( data.frame(onion = c(1,0,rep(1,4)), 
                       potato = rep(1,6), 
                       milk = c(NA,rep(1,5)), 
                       burger = c(1,1,0,0,1,1), 
                       beer = c(rep(0,5),1)))
data_mat
min.sup.thresh = 2
max.item = ncol(data_mat)
max.item
for(k in 1:max.item){
  if(ncol(data_mat)>1){
    Candi = list()
    Freq =  list()
    # modification here about rm_col, so it don't eat all your memory.
    rm_col = seq(ncol(data_mat))
    # here is the issue I think
    C_seq = combn(c(1:ncol(data_mat)),k)
    for(i in 1:ncol(C_seq)){
      # don't think you need a function multi_col so I put it inside
      data_frame <- data_mat[C_seq[,i]]
      Candi[[i]] = colnames(data_frame)
      multivec = data.frame(val = rep(1,nrow(data_frame)))
      for(q in 1:ncol(data_frame)){
        multivec = multivec*data_frame[q]
      }
      # the missing value error was because you missed the na.rm = TRUE in the sum function !
      if(sum(multivec, na.rm = TRUE) >= min.sup.thresh){
        Freq[[i]] = colnames(data_mat[C_seq[,i]])
      }else{
        # follow the modification of rm_col
        rm_col = rm_col[-i]
      }
    }
    # here is the BIG modification of your code it don't show error.
    tmp_data_mat=data_mat[rm_col]
    print(paste("number of generated candidate itemsets","in C",k,"is",length(Candi)))
    print(Candi)
    print("****************************")
    print(paste("total number of frequent itemsets","in F",k,"is",length(Freq)))
    print(Freq)
    print("###################################################################################")
  }
}https://stackoverflow.com/questions/60406524
复制相似问题