我正在尝试学习DQN代理使用Keras来玩Tic Tac Toe。问题是我的输出与我预期的形状不同。
详细信息:输入形状:(BOARD_SIZE ^ 2) * 3 -->这是一个热编码的游戏板输出形状:我希望输出将列出(BOARD_SIZE^2)的大小,因为它应该有可用动作的数量
问题:输出具有输入层[(BOARD_SIZE ^ 2) *3] * Number of actions (BOARD_SIZE^2)的形状大小
我试图寻找解决方案,但Keras文档相当糟糕。请帮助
这是我的模型
def create_model(self, game: GameController) -> Sequential:
input_size = (game.shape ** 2) * 3
model = Sequential()
model.add(Dense(input_size, input_dim=1, activation='relu'))
model.add(Dense(int(input_size / 2), activation='relu'))
model.add(Dense(int(input_size / 2), activation='relu'))
model.add(Dense((game.shape ** 2), activation='linear'))
model.compile(loss="mean_squared_error", optimizer=Adam(self.alpha))
return model这就是我试图获得输出的方式
q_values = self.model.predict(processed_input)这是BOAD预处理(一个热编码)
def preprocess_input(self, game: GameController) -> list:
encoded_x = copy.deepcopy(game.board)
encoded_o = copy.deepcopy(game.board)
encoded_blank = copy.deepcopy(game.board)
for row in range(game.shape):
for col in range(game.shape):
if encoded_x[row][col] == 'X':
encoded_x[row][col] = 1
else:
encoded_x[row][col] = 0
if encoded_o[row][col] == 'O':
encoded_o[row][col] = 1
else:
encoded_o[row][col] = 0
if encoded_blank[row][col] == '-':
encoded_blank[row][col] = 1
else:
encoded_blank[row][col] = 0
chained_x = list(chain.from_iterable(encoded_x))
chained_o = list(chain.from_iterable(encoded_o))
chained_blank = list(chain.from_iterable(encoded_blank))
string_board = list(chain(chained_x, chained_o, chained_blank))
board_to_int = [int(element) for element in string_board]
return board_to_int发布于 2019-07-24 23:21:54
好吧,经过几次尝试,我发现我的输入被转置了,所以我将input_dim设置为((BOARD_SIZE^2)*3),并将input_board重塑为(1,(BOARD_SIZE^2)*3)修复了问题。希望它能在未来帮助其他人:)
https://stackoverflow.com/questions/57168356
复制相似问题