对于我用Y=0 =‘new.data’创建的树模型,在给定方法(X1=4,X2=4,X3=4)的情况下,我如何找到获得泊松结果的概率?具体代码如下:
tree.pois.cp<-rpart(Y ~ X1 + X2 + X3, data = data, method = 'poisson', control = rpart.control(cp = 1.1034e-02))
我使用了下面的代码来做同样的事情,但是使用了我的负二项模型:
pred.y.nb<-predict(nb, newdata = new.data, type = "response")
prob0.nb<-dnbinom(0, mu=pred.y.nb, size=nb$theta)
prob0.nb
#this is my answer for probability of Y=0 given my negative binom model
(请大声回答这个问题,谢谢你的帮助:How to calculate the predicted probability of negative binomial regression model?)
我尝试对我的树模型tree.pois.cp使用相同的代码:
pred.y.pois.cp<-predict(tree.pois.cp, newdata = new.data, type = "response")
但是我得到了这个错误:
Error in match.arg(type) : 'arg' should be one of “vector”, “prob”, “class”, “matrix”
谢谢你的帮忙!
发布于 2018-07-28 07:16:19
请阅读rpart
文档。predict rpart
object没有type = "response"
。您可以尝试以下代码:
data<-data.frame(Y=as.character(rpois(n = 20000,.2)),X1=sample(1:4,20000,replace = T),X2=sample(1:4,20000,replace = T),X3=sample(1:4,20000,replace = T),X4=sample(1:4,20000,replace = T))
tree.pois.cp<-rpart(Y ~ X1 + X2 + X3, data = data, method = 'class')
new.data<- data.frame(Y="0",X1=4,X2=4,X3=4,X4=4)
pred.y.pois<-predict(tree.pois.cp, newdata = new.data, type = "prob")
pred.y.pois
https://stackoverflow.com/questions/51565460
复制相似问题