首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >使用SIMD基于另一个向量位值计算值的乘积

使用SIMD基于另一个向量位值计算值的乘积
EN

Stack Overflow用户
提问于 2019-11-08 01:17:32
回答 1查看 119关注 0票数 2

我有两个向量。大小为N的双精度a的向量和大小为ceil(N/8)的无符号字符的向量b。目标是计算a的一些值的乘积。b将逐位读取,其中每一位表示是否在产品中考虑来自a的给定double

代码语言:javascript
复制
  // Let's create some data      
  unsigned nbBits  = 1e7;
  unsigned nbBytes = nbBits / 8;
  unsigned char nbBitsInLastByte = nbBits % 8;
  assert(nbBits == nbBytes * 8 + nbBitsInLastByte);
  std::vector<double> a(nbBits, 0.999999);   // In practice a values will vary. It is just an easy to build example I am showing here
  std::vector<unsigned char> b(nbBytes, false); // I am not using `vector<bool>` nor `bitset`. I've got my reasons!
  assert(a.size() == b.size() * 8);

  // Set a few bits to true
  for (unsigned byte = 0 ; byte < (nbBytes-1) ; byte+=2)
  {
    b[byte] |= 1 << 2; // set second (zero-based counting) bit to 'true'
    b[byte] |= 1 << 7; // set last bit to 'true'
                //  ^ This is the bit index
  }

如上所述,我的目标是在b为true时计算a中值的乘积。它可以通过以下方式实现

代码语言:javascript
复制
  // Initialize the variable we want to compute
  double product = 1.0;

  // Product for the first nbByts-1 bytes
  for (unsigned byte = 0 ; byte < (nbBytes-1) ; ++byte)
  {
    for (unsigned bit = 0 ; bit < 8 ; ++bit) // inner loop could be manually unrolled
    {
      if((b[byte] >> bit) & 1) // gets the bit value
        product *= a[byte*8+bit];
    }
  }

  // Product for the last byte
  for (unsigned bit = 0 ; bit < nbBitsInLastByte ; ++bit)
  {
    if((b[nbBytes-1] >> bit) & 1) // gets the bit value
      product *= a[(nbBytes-1)*8+bit];
  }

这个乘积计算是我代码中速度最慢的部分。我想知道显式向量化(SIMD)这个过程在这里是否有帮助。我一直在看“xmmintrin.h”中提供的函数,但我对SIMD了解不多,也找不到对我有帮助的东西。你能帮帮我吗?

EN

回答 1

Stack Overflow用户

发布于 2019-11-21 23:53:00

如果你不关心乘法顺序,这很简单。关键是来自SSE4.1集合的_mm_blendv_pd指令。这使您可以完全实现无分支。

代码语言:javascript
复制
// Load 2 double values from source pointer, and conditionally multiply with the product.
// Returns the new product.
template<int startIdx>
inline __m128d product2( const double* pSource, __m128i mask, __m128d oldProduct )
{
    // Multiply values unconditionally
    const __m128d source = _mm_loadu_pd( pSource + startIdx );
    const __m128d newProduct = _mm_mul_pd( source, oldProduct );

    // We only calling product2 with 4 different template arguments.
    // There are 16 vector registers in total, enough for all 4 different `maskAndBits` values.
    constexpr int64_t bit1 = 1 << startIdx;
    constexpr int64_t bit2 = 1 << ( startIdx + 1 );
    const __m128i maskAndBits = _mm_setr_epi64x( bit1, bit2 );
    mask = _mm_and_si128( mask, maskAndBits );

    // NAN if the mask is 0 after the above AND i.e. the bit was not set, 0.0 if the bit was set
    const __m128d maskDouble = _mm_castsi128_pd( _mm_cmpeq_epi64( mask, _mm_setzero_si128() ) );

    // This instruction actually does the masking, it's from SSE 4.1
    return _mm_blendv_pd( newProduct, oldProduct, maskDouble );
}

double conditionalProducts( const double* ptr, const uint8_t* masks, size_t size )
{
    // Round down the size of your input vector, and multiply last couple values the old way.
    assert( 0 == size % 8 );
    __m128d prod = _mm_set1_pd( 1.0 );
    const double* const end = ptr + size;
    while( ptr < end )
    {
        // Broadcast the mask byte into 64-bit integer lanes
        const __m128i mask = _mm_set1_epi64x( *masks );
        // Compute the conditional products of 8 values
        prod = product2<0>( ptr, mask, prod );
        prod = product2<2>( ptr, mask, prod );
        prod = product2<4>( ptr, mask, prod );
        prod = product2<6>( ptr, mask, prod );
        // Advance the pointers
        ptr += 8;
        masks++;
    }
    // Multiply two lanes together
    prod = _mm_mul_sd( prod, _mm_shuffle_pd( prod, prod, 0b11 ) );
    return _mm_cvtsd_f64( prod );
}
票数 0
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/58753959

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档