我正在将一些代码从Keras API +TensorFlow1.14迁移到TensorFlow2.0和tf.keras
。以前的代码运行得很好,现在抛出了以下错误。
2020-02-18 21:38:17.678879: E tensorflow/core/common_runtime/executor.cc:642] Executor failed to create kernel. Invalid argument: Default MaxPoolingOp only supports NHWC on device type CPU
[[{{node sequential/max_pooling2d/MaxPool}}]]
Traceback (most recent call last):
File "C:/Users/ymeli/MEGA/Machine Learning/9. Deep learning for Python/5. Convolutional neural networks/CH19_Digits.py", line 70, in <module>
model.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size=200, epochs=10, verbose=2)
File "C:\Users\ymeli\Anaconda3\envs\Anaconda3.7\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 728, in fit
use_multiprocessing=use_multiprocessing)
File "C:\Users\ymeli\Anaconda3\envs\Anaconda3.7\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 324, in fit
total_epochs=epochs)
File "C:\Users\ymeli\Anaconda3\envs\Anaconda3.7\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 123, in run_one_epoch
batch_outs = execution_function(iterator)
File "C:\Users\ymeli\Anaconda3\envs\Anaconda3.7\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py", line 86, in execution_function
distributed_function(input_fn))
File "C:\Users\ymeli\Anaconda3\envs\Anaconda3.7\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 457, in __call__
result = self._call(*args, **kwds)
File "C:\Users\ymeli\Anaconda3\envs\Anaconda3.7\lib\site-packages\tensorflow_core\python\eager\def_function.py", line 520, in _call
return self._stateless_fn(*args, **kwds)
File "C:\Users\ymeli\Anaconda3\envs\Anaconda3.7\lib\site-packages\tensorflow_core\python\eager\function.py", line 1823, in __call__
return graph_function._filtered_call(args, kwargs) # pylint: disable=protected-access
File "C:\Users\ymeli\Anaconda3\envs\Anaconda3.7\lib\site-packages\tensorflow_core\python\eager\function.py", line 1141, in _filtered_call
self.captured_inputs)
File "C:\Users\ymeli\Anaconda3\envs\Anaconda3.7\lib\site-packages\tensorflow_core\python\eager\function.py", line 1224, in _call_flat
ctx, args, cancellation_manager=cancellation_manager)
File "C:\Users\ymeli\Anaconda3\envs\Anaconda3.7\lib\site-packages\tensorflow_core\python\eager\function.py", line 511, in call
ctx=ctx)
File "C:\Users\ymeli\Anaconda3\envs\Anaconda3.7\lib\site-packages\tensorflow_core\python\eager\execute.py", line 67, in quick_execute
six.raise_from(core._status_to_exception(e.code, message), None)
File "<string>", line 3, in raise_from
tensorflow.python.framework.errors_impl.InvalidArgumentError: Default MaxPoolingOp only supports NHWC on device type CPU
[[node sequential/max_pooling2d/MaxPool (defined at \Users\ymeli\Anaconda3\envs\Anaconda3.7\lib\site-packages\tensorflow_core\python\framework\ops.py:1751) ]] [Op:__inference_distributed_function_1139]
Function call stack:
distributed_function
Process finished with exit code 1
我正在运行的脚本相对简单。这是一个CNN分类数字。我的CPU是AMD ryzen 9 3900X。
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import Convolution2D
from tensorflow.keras.layers import MaxPooling2D
from tensorflow.keras.utils import to_categorical
from tensorflow.keras import backend as K
K.set_image_data_format("channels_first")
# Load Data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# Reshape to be [# of samples][channels][width][height]
X_train = X_train.reshape(X_train.shape[0], 1, 28, 28).astype('float32')
X_test = X_test.reshape(X_test.shape[0], 1, 28, 28).astype('float32')
# normalize inputs from 0-255 to 0-1
X_train = X_train / 255
X_test = X_test / 255
# One hot encode outputs
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
num_classes = y_test.shape[1]
# define baseline model
def baseline_model():
model = Sequential()
model.add(Convolution2D(30, kernel_size=(5, 5), kernel_initializer='normal', padding='valid', input_shape=(1, 28, 28), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(
Convolution2D(15, kernel_size=(3, 3), kernel_initializer='normal', padding='valid', input_shape=(1, 28, 28)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(50, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
model = baseline_model()
model.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size=200, epochs=10, verbose=2)
scores = model.evaluate(X_test, y_test, verbose=2)
print("Large CNN Error: {}%".format(100 - scores[1] * 100))
发布于 2020-02-19 05:57:57
我设法自己解决了这个问题。问题是这个新版本的tensorflow只在CPU上支持NHCW格式(NHCW代表示例数量、高度、宽度、通道)。所以通过改变
K.set_image_data_format("channels_first")
至
K.set_image_data_format("channels_last")
和
X_train = X_train.reshape(X_train.shape[0],1, 28, 28).astype('float32')
X_test = X_test.reshape(X_test.shape[0],1, 28, 28).astype('float32')
至
X_train = X_train.reshape(X_train.shape[0] 28, 28, 1).astype('float32')
X_test = X_test.reshape(X_test.shape[0],1, 28, 28, 1).astype('float32')
最后,
model.add(Convolution2D(30, kernel_size=(5, 5), kernel_initializer='normal', padding='valid', input_shape=(1, 28, 28),activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(15, kernel_size=(3, 3), kernel_initializer='normal', padding='valid', input_shape=(1, 28, 28)))
至
model.add(Convolution2D(30, kernel_size=(5, 5), kernel_initializer='normal', padding='valid', input_shape=(28, 28, 1),activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(15, kernel_size=(3, 3), kernel_initializer='normal', padding='valid', input_shape=(28, 28, 1)))
尺寸现在又正确了,问题就解决了。再一次万事大吉=)
https://stackoverflow.com/questions/60289143
复制相似问题