我有一个想要矢量化的函数:
import pandas as pd
import numpy as np
import random
import statsmodels.api as sm
data = pd.DataFrame({
'state': ['a', 'b', 'c']*200,
'read': [random.uniform(10,50) for i in range(600)],
'write': [random.uniform(0,10) for i in range(600)],
'cansu': [random.uniform(11,20) for i in range(600)],
'brink': [random.uniform(2,10) for i in range(600)]
})
loop = pd.DataFrame({
'state': ['a','a','c','b','c'],
'x': [1,2,3,2,4],
'y': [2,3,4,4,1]
})
def regress(z,x,y):
X = data.query("state==@z").iloc[:,x].values
X = sm.add_constant(X)
Y = data.query("state==@z").iloc[:,y].values
result = sm.OLS(Y,X).fit()
return result.params[1]我知道我可以使用apply, list comprehensions, itertools, map, filter, reduce, np.vectorize, etc.和所有很酷的功能。但是,我希望能够这样做:
loop['slope'] = regress(loop['state'].values, loop['x'].values, loop['y'].values)它目前不起作用。这个是可能的吗?如果是,我如何重写或修改我的函数以使其成为可能?
发布于 2020-05-11 23:08:07
试着这样做
与您的代码相同:
import statsmodels.api as sm
data = pd.DataFrame({
'state': ['a', 'b', 'c']*200,
'read': [random.uniform(10,50) for i in range(600)],
'write': [random.uniform(0,10) for i in range(600)],
'cansu': [random.uniform(11,20) for i in range(600)],
'brink': [random.uniform(2,10) for i in range(600)]
})
loop = pd.DataFrame({
'state': ['a','a','c','b','c'],
'x': [1,2,3,2,4],
'y': [2,3,4,4,1]
})
def regress(z,x,y):
X = data.query("state==@z").iloc[:,x].values
X = sm.add_constant(X)
Y = data.query("state==@z").iloc[:,y].values
result = sm.OLS(Y,X).fit()
return result.params[1]列表中的执行:
loop['slope'] = regress(list(loop['state'].values), list(loop['x'].values), list(loop['y'].values))https://stackoverflow.com/questions/61721285
复制相似问题