我试图根据图像和文本对产品进行分类,但遇到了错误
img_width, img_height = 224, 224
# build the VGG16 network
model = Sequential()
model.add(ZeroPadding2D((1, 1), input_shape=(img_width, img_height,3), name='image_input'))
model.add(Convolution2D(64, (3, 3), activation='relu', name='conv1_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(64, (3, 3), activation='relu', name='conv1_2'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
# set trainable to false in all layers
for layer in model.layers:
if hasattr(layer, 'trainable'):
layer.trainable = False
return model
WEIGHTS_PATH='E:/'
weight_file = ''.join((WEIGHTS_PATH, '/vgg16_weights.h5'))
f = h5py.File(weight_file,mode='r')
for k in range(f.attrs['nb_layers']):
if k >= len(model.layers):
# we don't look at the last (fully-connected) layers in the savefile
break
g = f['layer_{}'.format(k)]
weights = [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])]
model.layers[k].set_weights(weights)
f.close()
return model
load_weights_in_base_model(get_base_model())
错误:文件"C:\Python\lib\site-packages\keras\engine\topology.py",行1217,在set_weights中'provided weight shape‘+ str(w.shape)) ValueError:层权重形状(3,3,3,64)与提供的权重形状(64,3,3,3)不兼容
有谁能帮我解决这个错误吗?提前谢谢..
发布于 2018-01-16 23:52:54
问题似乎出在线路上。
model.layers[k].set_weights(weights)
Keras对不同的后端进行不同的初始化权重。如果你使用theano
作为后端,那么权重将被初始化为acc。到kernels_first
,如果您使用tensorflow
作为后端,那么权重将初始化为acc。敬kernels_last
。
因此,在您的案例中,问题似乎是您正在使用tensorflow
,但正在从使用theano
作为后端创建的文件中加载权重。解决方案是使用keras conv_utils
重塑内核。
from keras.utils.conv_utils import convert_kernel
reshaped_weights = convert_kernel(weights)
model.layers[k].set_weights(reshaped_weights)
有关更多信息,请查看this
https://stackoverflow.com/questions/48283625
复制相似问题