如何使用sns.heatmap
的annot
方法为其提供自定义命名方案?
本质上,我想删除所有低于阈值的标签(在本例中为0)。我试着按照@ojy在Custom Annotation Seaborn Heatmap中说的做,但是我得到了下面的错误。我看到一个例子,有人遍历每个单元格,这是唯一的方法吗?
Seaborn documentation:
annot : bool or rectangular dataset, optional
If True, write the data value in each cell. If an array-like with the same shape as data, then use this to annotate the heatmap instead of the raw data.
因此,我尝试了以下方法:
# Load Datasets
from sklearn.datasets import load_iris
iris = load_iris()
DF_X = pd.DataFrame(iris.data, index = ["%d_%d"%(i,c) for i,c in zip(range(X.shape[0]), iris.target)], columns=iris.feature_names)
# Correlation
DF_corr = DF_X.corr()
# Figure
fig, ax= plt.subplots(ncols=2, figsize=(16,6))
sns.heatmap(DF_corr, annot=True, ax=ax[0])
# Masked Figure
threshold = 0
DF_mask = DF_corr.copy()
DF_mask[DF_mask < threshold] = 0
sns.heatmap(DF_mask, annot=True, ax=ax[1])
# Annotating
Ar_annotation = DF_mask.as_matrix()
Ar_annotation[Ar_annotation == 0] = None
Ar_annotation
# array([[ 1. , nan, 0.87175416, 0.81795363],
# [ nan, 1. , nan, nan],
# [ 0.87175416, nan, 1. , 0.9627571 ],
# [ 0.81795363, nan, 0.9627571 , 1. ]])
print(DF_mask.shape, Ar_annotation.shape)
# (4, 4) (4, 4)
sns.heatmap(DF_mask, annot=Ar_annotation, fmt="")
# ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
遮罩前(左)、遮罩后(右)
发布于 2016-08-05 06:35:28
https://stackoverflow.com/questions/38726886
复制相似问题