我正在从事一个项目,该项目根据与药物协同作用相关的各种输入特征来预测药物协同效应的值。协同值是浮点数,所以我想为我的神经网络设置一个精度范围。假设实际值是1.342423,我的模型预测是1.30123,那么输出应该被视为正确的输出。换句话说,我想限制检查小数位数以比较实际答案和预测答案的数量。神经网络:
model = Sequential()
act = 'relu'
model.add(Dense(430, input_shape=(3,)))
model.add(Activation(act))
model.add(Dense(256))
model.add(Activation(act))
model.add(Dropout(0.42))
model.add(Dense(148))
model.add(Activation(act))
model.add(Dropout(0.3))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy'])
用于学习和训练/测试数据的完整源代码:https://github.com/tanmay-edgelord/Drug-Synergy-Models/blob/master请询问所需的任何其他详细信息(使用带TensorFlow后端的Keras )
发布于 2017-07-04 01:40:58
import keras.backend as K
def myAccuracy(y_true, y_pred):
diff = K.abs(y_true-y_pred) #absolute difference between correct and predicted values
correct = K.less(diff,0.05) #tensor with 0 for false values and 1 for true values
return K.mean(correct) #sum all 1's and divide by the total.
然后在模型编译中使用它:
model.compile(metrics=[myAccuracy],....)
https://stackoverflow.com/questions/44890900
复制相似问题