我已经把Kafka Stream和Spark连接起来了此外,我还训练了Apache Spark Mlib模型,以基于流文本进行预测。我的问题是,要得到一个预测,我需要通过一个DataFramework。
//kafka stream
val stream = KafkaUtils.createDirectStream[String, String](
ssc,
PreferConsistent,
Subscribe[String, String](topics, kafkaParams)
)
//load mlib model
val model = PipelineModel.load(modelPath)
stream.foreachRDD { rdd =>
rdd.foreach { record =>
//to get a prediction need to pass DF
val toPredict = spark.createDataFrame(Seq(
(1L, record.value())
)).toDF("id", "review")
val prediction = model.transform(test)
}
}
我的问题是,Spark streaming不允许创建DataFrame。有没有办法做到这一点?我可以使用case类或struct吗?
发布于 2017-07-10 16:59:51
可以从RDD创建DataFrame
或Dataset
,就像在core Spark中一样。为此,我们需要应用一个模式。然后,在foreachRDD
中,我们可以将生成的RDD转换为DataFrame,以便进一步与ML管道一起使用。
// we use a schema in the form of a case class
case class MyStructure(field:type, ....)
// and we implement our custom transformation from string to our structure
object MyStructure {
def parse(str: String) : Option[MyStructure] = ...
}
val stream = KafkaUtils.createDirectStream...
// give the stream a schema using a case class
val strucStream = stream.flatMap(cr => MyStructure.parse(cr.value))
strucStream.foreachRDD { rdd =>
import sparkSession.implicits._
val df = rdd.toDF()
val prediction = model.transform(df)
// do something with df
}
https://stackoverflow.com/questions/45004411
复制相似问题