我有多个具有层次结构的pd.DataFrames。假设我有:
day_temperature_london_df = pd.DataFrame(...)
night_temperature_london_df = pd.DataFrame(...)
day_temperature_paris_df = pd.DataFrame(...)
night_temperature_paris_df = pd.DataFrame(...)我想把它们分组到hdf5文件中,这样其中两个就会去“伦敦”组,另外两个就会去“巴黎”。
如果我使用h5py,我会丢失pd.DataFrame的格式,丢失索引和列。
f = h5py.File("temperature.h5", "w")
grp_london = f.create_group("london")
day_lon_dset = grp_london.create_dataset("day", data=day_temperature_london_df)
print day_lon_dset[...]这给了我一个numpy数组。有没有一种方法可以像.to_hdf一样用层次结构存储许多数据帧--它保留了数据帧的所有属性?
发布于 2018-01-10 09:55:48
与pandas相比,我更熟悉numpy和h5py。但我能够创建:
In [85]: store = pd.HDFStore('store.h5')
In [86]: store.root
Out[86]:
/ (RootGroup) ''
children := []
In [87]: store['df1']=df1
In [88]: store['group/df1']=df1
In [89]: store['group/df2']=df2可以重新加载和查看:
In [95]: store
Out[95]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df1 frame (shape->[3,4])
/group/df1 frame (shape->[3,4])
/group/df2 frame (shape->[5,6])
In [96]: store.root
Out[96]:
/ (RootGroup) ''
children := ['df1' (Group), 'group' (Group)]store._handle详细显示了文件结构。
在shell中,我还可以使用以下命令查看文件:
1431:~/mypy$ h5dump store.h5 |less如下所示:
how should i use h5py lib for storing time series data
In [4]: f1 = h5py.File('store.h5')
In [5]: list(f1.keys())
Out[5]: ['df1', 'group']
In [6]: list(f1['df1'].keys())
Out[6]: ['axis0', 'axis1', 'block0_items', 'block0_values']
In [10]: list(f1['group'].keys())
Out[10]: ['df1', 'df2']
In [11]: list(f1['group/df1'].keys())
Out[11]: ['axis0', 'axis1', 'block0_items', 'block0_values']
In [12]: list(f1['group/df2'].keys())
Out[12]: ['axis0', 'axis1', 'block0_items', 'block0_values']因此,` `group/df2‘键相当于组的层次结构:
In [13]: gp = f1['group']
In [15]: gp['df2']['axis0']
Out[15]: <HDF5 dataset "axis0": shape (6,), type "<i8">
[17]: f1['group/df2/axis0']
Out[17]: <HDF5 dataset "axis0": shape (6,), type "<i8">我们必须更深入地研究HDFStore或Pytables的文档或代码,看看它们是否有create_group的等价物。
https://stackoverflow.com/questions/48172863
复制相似问题