我正尝试在tensorflow(python2上的v1.9.0)上使用adadelta优化器在GPU上训练一个模型。它显示以下错误。
InvalidArgumentError (see above for traceback): Cannot assign a device for operation 'embedding_matrix_de/read': Could not satisfy explicit device specification '' because the node was colocated with a group of nodes that required incompatible device '/job:localhost/replica:0/task:0/device:GPU:0'
Colocation Debug Info:
Colocation group had the following types and devices:
UnsortedSegmentSum: GPU CPU
Unique: GPU CPU
Shape: GPU CPU
Cast: GPU CPU
StridedSlice: GPU CPU
GatherV2: GPU CPU
SparseApplyAdadelta: CPU
Const: GPU CPU
Identity: CPU
VariableV2: GPU CPU
Colocation members and user-requested devices:
embedding_matrix_de (VariableV2)
embedding_matrix_de/read (Identity)
embedding_lookup/axis (Const)
embedding_lookup (GatherV2)
gradients/embedding_lookup_grad/Shape (Const)
gradients/embedding_lookup_grad/ToInt32 (Cast)
embedding_matrix_de/Adadelta (VariableV2)
embedding_matrix_de/Adadelta_1 (VariableV2)
Adadelta/update_embedding_matrix_de/Unique (Unique)
Adadelta/update_embedding_matrix_de/Shape (Shape)
Adadelta/update_embedding_matrix_de/strided_slice/stack (Const)
Adadelta/update_embedding_matrix_de/strided_slice/stack_1 (Const)
Adadelta/update_embedding_matrix_de/strided_slice/stack_2 (Const)
Adadelta/update_embedding_matrix_de/strided_slice (StridedSlice)
Adadelta/update_embedding_matrix_de/UnsortedSegmentSum (UnsortedSegmentSum)
Adadelta/update_embedding_matrix_de/SparseApplyAdadelta (SparseApplyAdadelta)
[[Node: embedding_matrix_de/read = Identity[T=DT_FLOAT, _class=["loc:@embedding_matrix_de"]](embedding_matrix_de)]]当我用adam替换adadelta时,没有任何问题。下面给出了一些代码片段。
....
embedding_matrix_decode = tf.get_variable(
name="embedding_matrix_de",
shape=[trainVocabSize, embedding_size],
dtype=tf.float32)
....
optimizer = tf.train.AdadeltaOptimizer()
....发布于 2020-06-18 18:32:31
我在Tensorflow 2.1.1中遇到了同样的问题。Adadelta优化器似乎不支持GPU和TPU。
https://stackoverflow.com/questions/51600696
复制相似问题