下面的数据是基于一辆面包车的GPS坐标,点火是否打开/关闭,以及在给定时间面包车离目标位置有多远。我想要确定一辆面包车是否在一个位置(<300)或附近,点火是否关闭,如果两个条件都成立,停留的时间。
在下面的示例中,我将行1-4可视化为“分组”在一起,因为它们是距离<300的连续行。第5行被单独“分组”,因为它是大于300的,而第6-8行被“分组”在一起,因为它们是距离<300的连续行。
因此,由于点火在第1-4行被关闭,我想要计算持续时间(因为面包车在给定的时间量内“停止”在该位置)。但是,其他两组(第5行和第6-8行)不应计算持续时间,因为在这些组中从未关闭过点火。
df
AcctID   On_Off    Distance  Timestamp
123      On        230       12:00
123      On        30        12:02
123      Off       29        12:05
123      Off       35        12:10
123      On        3000      12:13
123      On        100       12:20
123      On        95        12:22
123      On        240       12:28我能够对距离是否小于300 (Within_Distance)进行分类,但确定分组中至少有一行的点火是否关闭让我感到困惑。下面是最终的数据帧应该是什么样子:
df['Within_Distance'] = np.where(df['Distance']<300, "Yes", "No")
df
AcctID   On_Off    Distance  Timestamp   Within_Distance    Was_Off    Within_Distance_and_Was_Off
123      On        230       12:20       Yes                Yes        Yes
123      On        30        12:02       Yes                Yes        Yes
123      Off       29        12:05       Yes                Yes        Yes
123      Off       35        12:10       Yes                Yes        Yes
123      On        3000      12:13       No                 No         No
123      On        100       12:20       Yes                No         No
123      On        95        12:22       Yes                No         No
123      On        240       12:28       Yes                No         No提前感谢!
发布于 2017-06-20 22:20:10
让我们试一试:
df['Within_Distance'] = np.where(df['Distance']<300, "Yes", "No")
df['Was_Off'] = df.groupby((df.Distance > 300).diff().fillna(0).cumsum())['On_Off'].transform(lambda x: 'Yes' if (x == 'Off').any() else 'No')
df['Within_Distinace_and_Was_Off']  = np.where((df['Within_Distance'] == 'Yes') & (df['Was_Off'] == 'Yes'),'Yes','No')输出:
   AcctID On_Off  Distance Timestamp Within_Distance Was_Off  \
0     123     On       230     12:00             Yes     Yes   
1     123     On        30     12:02             Yes     Yes   
2     123    Off        29     12:05             Yes     Yes   
3     123    Off        35     12:10             Yes     Yes   
4     123     On      3000     12:13              No      No   
5     123     On       100     12:20             Yes      No   
6     123     On        95     12:22             Yes      No   
7     123     On       240     12:28             Yes      No   
  Within_Distinace_and_Was_Off  
0                          Yes  
1                          Yes  
2                          Yes  
3                          Yes  
4                           No  
5                           No  
6                           No  
7                           No  发布于 2017-06-20 22:24:53
首先,设置一个要使用的布尔值字段
df['Off'] = df['On_Off'] == 'Off'然后构造一个字段来标识groupby的连续行,如here所示
(df['Within_Distance'] != df['Within_Distance'].shift()).cumsum()并使用.any标识groupby中任何行的布尔值为true的位置:
df['Was_Off'] = df.groupby((df['Within_Distance'] != df['Within_Distance'].shift()).cumsum())['Off'].transform(any)
Out[31]: 
   AcctID On_Off  Distance Timestamp Within_Distance    Off  Was_Off
0     123     On       230     12:00             Yes  False     True
1     123     On        30     12:02             Yes  False     True
2     123    Off        29     12:05             Yes   True     True
3     123    Off        35     12:10             Yes   True     True
4     123     On      3000     12:13              No  False    False
5     123     On       100     12:20             Yes  False    False
6     123     On        95     12:22             Yes  False    False
7     123     On       240     12:28             Yes  False    Falsehttps://stackoverflow.com/questions/44654874
复制相似问题