我已经写了一段代码,它使用sympy来设置一个矩阵和一个向量。这两个元素是sympy符号。然后我求逆矩阵,并将求逆矩阵与向量相乘。这应该是具有n个变量的线性方程系统的通用求解器。我对这些线性方程的符号解很感兴趣。问题是我的代码太慢了。例如,对于n=4,它大约需要30秒,但是对于n=7,我到目前为止还不能解决它,代码运行了一整晚(8小时),早上还没有完成。这是我的代码。
from sympy import *
import pprint
MM = Matrix(niso,1, lambda i,j:var('MM_%s' % (i+1) ))
MA = Matrix (niso,1, lambda i,j:var('m_%s%s' % ('A', chr(66+i)) ) )
MX = Matrix (niso,1, lambda i,j:var('m_%s%s'% (chr(66+i), 'A')))
RB = Matrix(niso,1, lambda i,j:var('R_%s%s' % ('A'+chr(66+i),i+2)))
R = Matrix (niso, niso-1, lambda i,j: var('R_%s%d' % (chr(65+i) , j+2 )))
K= Matrix(niso-1,1, lambda i,j:var('K_%d' % (i+2) ) )
C= Matrix(niso-1,1, lambda i,j:var('A_%d' % i))
A = Matrix(niso-1,niso-1, lambda i,j:var('A_%d' % i))
b = Matrix(niso-1,1, lambda i,j:var('A_%d' % i))
for i in range(0,niso-1):
for j in range(0,niso-1):
A[i,j]=MM[j+1,0]*(Add(Mul(R[0,j],1/MA[i,0]/(RB[i,0]-R[0,i])))+R[i+1,j]/MX[i,0]/(-RB[i,0]+R[0,i]))
for i in range(0,niso-1):
b[i,0]=MM[0,0]*(Add(Mul(1,1/MA[i,0]/(RB[i,0]-R[0,i])))+1/MX[i,0]/(-RB[i,0]+R[0,i]))
A_in = Inverse(A)
if niso <= 4:
X =simplify(A_in*b)
if niso > 4:
X = A_in*b
pprint(X)有没有办法加快速度呢?
发布于 2018-06-09 03:03:43
不要倒置!使用n=4
%timeit soln = A.LUsolve(b)
697 µs ± 12.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)使用n=10
%timeit soln = A.LUsolve(b)
431 ms ± 13 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)https://stackoverflow.com/questions/50754020
复制相似问题