首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >文本分类NaiveBayes

文本分类NaiveBayes
EN

Stack Overflow用户
提问于 2017-11-27 15:39:05
回答 0查看 877关注 0票数 1

我正在尝试按类别对一系列文本示例新闻进行分类。我有一个巨大的数据集的新闻文本与类别在数据库中。机器应该被训练并决定新闻类别。

代码语言:javascript
运行
复制
    public static string[] Tokenize(string text)
    {
        StringBuilder sb = new StringBuilder(text);

        char[] invalid = "!-;':'\",.?\n\r\t".ToCharArray();

        for (int i = 0; i < invalid.Length; i++)
            sb.Replace(invalid[i], ' ');

        return sb.ToString().Split(new[] { ' ' }, System.StringSplitOptions.RemoveEmptyEntries);
    }
    private void Form1_Load(object sender, EventArgs e)
    {
        string strDSN = "Provider=Microsoft.ACE.OLEDB.12.0;Data Source = c:\\users\\158820\\Documents\\Database4.accdb";
        string strSQL = "SELECT * FROM NewsRepository";
        // create Objects of ADOConnection and ADOCommand  
        OleDbConnection myConn = new OleDbConnection(strDSN);
        OleDbDataAdapter myCmd = new OleDbDataAdapter(strSQL, myConn);
        myConn.Open();
        DataSet dtSet = new DataSet();
        myCmd.Fill(dtSet, "NewsRepository");
        DataTable dTable = dtSet.Tables[0];
        myConn.Close();

        StringBuilder sWords = new StringBuilder();
        string[][] swords = new string[dTable.Rows.Count][];
        int i = 0;

        foreach (DataRowView dr in dTable.DefaultView)
        {
            swords[i] = Tokenize(dr[1].ToString());
            i++;
        }

        Codification codebook = new Codification(dTable, new string[] { "NewsTitle", "Category" });
        DataTable symbols = codebook.Apply(dTable);
        int[][] inputs = symbols.ToJagged<int>(new string[] { "NewsTitle" });
        int[] outputs = symbols.ToArray<int>("Category");

        bagOfWords(inputs, outputs);
    }


    private static void bagOfWords(int[][] inputs, int[] outputs)
    {
        var bow = new BagOfWords<int>();
        var quantizer = bow.Learn(inputs);
        string filenamebow = Path.Combine(Application.StartupPath, "News_BOW.accord");
        Serializer.Save(obj: bow, path: filenamebow);
        double[][] histograms = quantizer.Transform(inputs);

        // One way to perform sequence classification with an SVM is to use
        // a kernel defined over sequences, such as DynamicTimeWarping.

        // Create the multi-class learning algorithm as one-vs-one with DTW:
        var teacher = new MulticlassSupportVectorLearning<ChiSquare, double[]>()
        {
            Learner = (p) => new SequentialMinimalOptimization<ChiSquare, double[]>()
            {
               // Complexity = 100 // Create a hard SVM
            }
        };

        // Learn a multi-label SVM using the teacher
        var svm = teacher.Learn(histograms, outputs);

        // Get the predictions for the inputs
        int[] predicted = svm.Decide(histograms);

        // Create a confusion matrix to check the quality of the predictions:
        var cm = new GeneralConfusionMatrix(predicted: predicted, expected: outputs);

        // Check the accuracy measure:
        double accuracy = cm.Accuracy;

        string filename = Path.Combine(Application.StartupPath, "News_SVM.accord");
        Serializer.Save(obj: svm, path: filename);
    }

我对如何训练accord.net对象感到有点困惑。我能够序列化经过训练的模型(大约106MB,用于9个类别中3600条独特的新闻)

如何使用该模型来预测一组新的新闻文本的类别?

EN

回答

页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/47505910

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档