正在尝试将数据编码为csv文件。课堂上的助教推荐sklearn中的LabelEncoder。有一列名为education_level。我需要按照“高、中、低”的顺序进行编码。但是LabelEncoder.fit_transform默认使用ASCII码,这意味着它将按照“高、低、中”的顺序进行编码。
找不到使用自定义顺序对其进行编码的方法。代码附加在下面。
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
# load train.csv
df = pd.read_csv('./train.csv')
objfeatures = df.select_dtypes(include="object").columns
le = preprocessing.LabelEncoder()
# Use Label Encoder
# TODO
# Any Better Way to encode the data? How to deal with missing values
for feat in objfeatures:
df[feat] = le.fit_transform(df[feat].astype(str))发布于 2021-11-18 14:54:08
您应该使用OrdinalEncoder,并使用数组列表定义每列的类别,请参阅help page
from sklearn.preprocessing import OrdinalEncoder
df = pd.DataFrame({'education_level':['High','Medium','Low','Medium'],
'var':['a','b','c','b']})在这里定义第一列中的顺序,然后定义第二列中的顺序:
oe = OrdinalEncoder(categories=[['High','Medium','Low'],['c','b','a']])
df
education_level var
0 High a
1 Medium b
2 Low c
3 Medium b
oe.fit_transform(df)
array([[0., 2.],
[1., 1.],
[2., 0.],
[1., 1.]])https://stackoverflow.com/questions/70016174
复制相似问题